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Abstract

The paper provides an introduction to the field of embodied cognitive
science from a biological and behavioural perspective. We show how
the field of neuro-ethology can help transform cognitive science from
a representational to an embodied perspective. The transformation is
necessary to introduce a bottom-up approach to understanding cog-
nition in order to resolve some fundamental problems with classical
cognitive science. We give examples of current research by which we
characterise the key idea of embodied cognitive science: study cogni-
tion by starting with the low-level behaviour of simple animals.

1 Introduction

Embodied cognitive science studies how complete agents cope with the chal-
lenges of their environment (Clark, 1996; Pfeifer and Scheier, 1999). Com-
plete agents are natural or artificial systems (animals or machines) that pos-
sess a body (Varela, Thompson, and Rosch, 1991) and are situated (Clancey,
1997) in their environment, i.e., they perceive the environment only through
their own sensors. Moreover, complete agents possess characteristics such
as autonomy, self-sufficiency, and adaptivity (Pfeifer, 1996). The ultimate
aim of embodied cognitive science is to understand how high-level cognitive
processes such as reasoning and language arose from low-level interactions
with the environment such as object manipulation and corrective eye move-
ments. The main motivation for this approach is the argument that during
natural evolution, high-level cognitive capacities and the associated brain
areas (neo-cortex in humans) developed from low-level sensori-motor cou-
plings in the deep parts of the brain (e.g., the limbic system in humans)
(Kalat, 2001).

1

https://www.researchgate.net/publication/2700029_Building_Fungus_Eaters_Design_Principles_of_Autonomous_Agents?el=1_x_8&enrichId=rgreq-4e0a0483-01ca-4965-9562-3f241d31ac73&enrichSource=Y292ZXJQYWdlOzIzODg0MDM7QVM6MTQyNDAzNjcxNDMzMjE2QDE0MTA5NjMwODk0MTY=
https://www.researchgate.net/publication/229091431_Understanding_Intelligence?el=1_x_8&enrichId=rgreq-4e0a0483-01ca-4965-9562-3f241d31ac73&enrichSource=Y292ZXJQYWdlOzIzODg0MDM7QVM6MTQyNDAzNjcxNDMzMjE2QDE0MTA5NjMwODk0MTY=
https://www.researchgate.net/publication/200772780_Being_There_Putting_Mind_Body_and_World_Together_Again?el=1_x_8&enrichId=rgreq-4e0a0483-01ca-4965-9562-3f241d31ac73&enrichSource=Y292ZXJQYWdlOzIzODg0MDM7QVM6MTQyNDAzNjcxNDMzMjE2QDE0MTA5NjMwODk0MTY=


Embodied cognitive science, therefore, contrasts traditional cognitive sci-
ence (e.g., Stillings et al., 1995) and classical artificial intelligence (e.g.,
Winston, 1977). The latter fields aim at understanding and synthesis-
ing high-level cognition using a computational theory of mind (Pylyshyn,
1984; Sterelny, 1990), i.e., interpreting human mental processes as compu-
tations on symbolic representations.

Embodied cognitive science builds upon the large scientific heritage of
fields such as neuro-ethology (Guthrie, 1980; Camhi, 1984; Hoyle, 1984), cy-
bernetics (Wiener, 1948), and ecological psychology (Gibson, 1979). These
areas of research share two features in their scientific method: the bottom-up
approach and comparative study.

In this paper, we identify the relation of embodied cognitive science and
neuro-ethology. The following sections first treat the essence of traditional
cognitive science and classical artificial intelligence (section 2) followed by
the pith of neuro-ethology (section 3). We indicate that traditional cognitive
science ignores particular aspects of intelligent behaviour, which leads to
fundamental problems with the field. Furthermore, neuro-ethology focusses
exactly on the aspects that are disregarded by traditional cognitive science
(Beer, 1990). In section 4, we show how the research questions of neuro-
ethology help transform traditional cognitive science into embodied cognitive
science, which does address the issues disregarded by traditional cognitive
scientists. In addition, we elucidate how embodied cognitive science relieves
some of the problems faced by neuro-ethologists. In section 5 we discuss
the scope and limitations of embodied cognitive science. Finally, we draw
conclusions in section 6.

2 Traditional cognitive science and
classical artificial intelligence

Cognitive science is traditionally a science of the intelligent mind (Still-
ings et al., 1995). Some cognitive scientists restrict their focus to human
intelligence, whereas others also include the abstract theory of intelligent
processes and computer intelligence (Simon and Kaplan, 1989). In the 1960s,
psychologists, philosophers, computer scientists, linguists, and neuroscien-
tists joined forces in order to understand complex mental tasks such as
thinking, remembering, and language (Gardner, 1985). For example, the
interpretation of speech can be studied from a neuroscientific perspective
(sound reception and neural processing in the brain), a linguistic perspec-
tive (parsing, word morphology, etc.), a computer science perspective (au-
tomatic speech recognition, natural language processing), a philosophical
perspective (e.g., semantics), and a psychological perspective (intention of
a speech act, etc.).

Pivotal in the approach of traditional cognitive science is the role of
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symbolic representations. Pylyshyn (1984) states that the distinctive fea-
ture of cognisers – the subjects of study for cognitive scientists – is that
their behaviour is based on representations. The idea is based on the rep-
resentational theory of mind (Fodor, 1981; Sterelny, 1990) that states that
all mental processes can be described in terms of computations on symbolic
representations. In other words, mental activity is equivalent to the execu-
tion of an algorithm. For example, traditional cognitive science describes
a person’s reaction to a visual stimulus as follows. First, the mind trans-
forms the incoming image into some symbolic input representation. The
form of this representation could be a logical proposition, a feature vector,
or some other description. Second, the input representation is compared to
representations stored in memory. Third, from the outcomes of the com-
parison an output representation is created that contains the appropriate
motor actions. Notice that in the traditional approach to cognitive science,
the questions of how an input representation is built and of how an output
representation is executed by the motor system, is often ignored. The main
focus lies on the algorithmic processing in the middle.

In the 1930s, the conception of mental activity as computations on sym-
bolic representations was supported when Alan Turing presented the univer-
sal Turing machine – a hypothetical machine that can compute any possible
mathematical function (Haugeland, 1985). From Turing’s idea, elaborated
by von Neuman’s architecture for general-purpose computers (Stillings et al.,
1995), the field of artificial intelligence (AI) was originated in 1956 (Gardner,
1985). Together with the traditional cognitive scientists, early researchers in
artificial intelligence envisioned the human mind as a machine performing
computations on symbolic representations to solve problems (Newell and
Simon, 1981). Moreover, given the fact that the Turing machine could com-
pute any mathematical function, the researchers felt they were able to build
a computer that emulated human-level intelligence.

The achievements of classical AI lie mainly in the domain of mathemat-
ical problem solving and reasoning with explicit knowledge. For instance,
in 1997 the computer chess programme Deep Blue beat the world cham-
pion Kasparov. Moreover, knowledge-based decision support systems are
now wide-spread in companies and other organisations. The applications of
classical AI research outperform humans in particular when a computer’s
processing speed and memory directly compete with that of a human brain.
For instance, Deep Blue’s success is mainly due to the fact that it could
compute the consequences of its moves quicker than Kasparov could. Also,
logical decision making is better performed by computers that can handle
vast numbers of rules as compared to humans experts that rely on intu-
ition much more than on logical inference – e.g., legal decision making by
computers is more consistent than by humans (Van den Herik, 1997).

In other domains, though, the performance of artificial systems does
not compare to that of natural systems (animals) by far. These domains
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typically are related to the real world and an artificial system’s interac-
tion with that real world (Brooks, 1990; Wilson, 1991; Clark, 1996; Clancey,
1997; Arkin, 1998; Pfeifer and Scheier, 1999). For instance, the mobile robot
Shakey was built to navigate in a laboratory environment using a camera and
a symbolic planning system (Nilsson, 1984). The robot’s behaviour is brittle
and sensitive to noise in the environment (Brooks, 1986; Arkin, 1998). The
problems mentioned here are captured by two important theoretical issues
regarding the symbolic representation of the real world: the frame prob-
lem (McCarthy and Hayes, 1969; Dennett, 1984) and the symbol grounding
problem (Harnad, 1990). A thorough treatment of the problems reaches be-
yond the scope of this paper. We therefore restrict ourselves to giving a brief
description in order to indicate the problems faced by traditional cognitive
science and classical AI when applying the representational theory of mind
to the real-world domain. For a full discussion of the problems we refer to
the literature cited above.

The frame problem addresses the difficulties with representing change.
If an intelligent system represents its environment symbolically, then how
does it update the representation over time? This might not seem a problem
for an abstract domain such as chess: there is a finite number of board
positions and chess pieces. In contrast, changes in the real world are so fast
and abundant that it is hardly plausible that intelligent systems (animals
or machines) could efficiently use symbolic representations of the world for
all of their behavioural patterns (Brooks, 1991; Kirsh, 1991). The symbol
grounding problem discusses how symbolic representations relate to the real
world. Again, in highly abstract domains this problem is less significant
as such a system needs not know the meaning of the symbols it uses: a
decision-support system need not know the meaning of the rules it operates
on in order to deduce a valid conclusion from the input it is supplied with.
However, a system operating autonomously in a real-world needs to know
the relation between real-world objects (food, predators) and the system’s
symbolic representations of those objects: the meaning of symbols must be
grounded in the system’s own interaction with the real world (Pfeifer and
Scheier, 1999). Gibson (1979) discusses the grounding of classification tasks
in terms of affordances: food can be eaten, predators can be escaped from.
Traditional cognitive science focusses on high-level cognitive capacities, not
on low-level interactions with the real world. Therefore, for Shakey a goal
position is a meaningless goal position, supplied by a human experimenter.

From the previous treatment of classical AI it becomes clear that ex-
planations of intelligent behaviour in terms of the processing of symbolic
representations might be appropriate in abstract domains, such as mathe-
matics and logic – in more dynamic domains found in the natural world,
the frame problem and symbol grounding problem point out to the need
of increased understanding of an intelligent system’s interaction with the
real world. In other words: “understanding the nature of cognition requires
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considering more than the complex problem solving and learning of human
experts and their tutees.” (Clancey, 1997, p. 6). In the next section we pro-
vide an introduction to a scientific field in which the interaction of animals
with the environment is cardinal. It will be shown that this field in fact
helps transform cognitive science from a representational to an embodied
perspective.

3 Neuro-ethology

Neuro-ethology is the study of natural behaviour and the neural mecha-
nisms mediating it (Guthrie, 1980; Camhi, 1984; Hoyle, 1984). The field
originated from two other biological disciplines: neuro-biology and ethol-
ogy that, by themselves, differ significantly in research interest and meth-
ods. Neuro-biology investigates the workings of neural structures in animals
under controlled circumstances (Kandel, 1976). The experimental set-up
allows neuro-biologist to obtain strict stimulus-response characteristics of
a brain area. As a drawback, the laboratory conditions might cause the
test animals to behave in a non-natural way which in turn places a bias on
the experimental results (Huber, Franz, and Bülthoff, 1998). In contrast,
ethologists study the behaviour of animals in their natural habitat (field
experiments) (Slater, 1985). The approach usually guarantees the display
of natural behaviour by the animals, but makes brain recordings virtually
impossible. As a result, ethological research usually yields no results beyond
the level of descriptions of natural behaviour (Camhi, 1984).

Neuro-ethology aims at combining the explanatory power of neuro-biology
with the ecological validity of ethological research. In order to reach the aim,
neuro-ethologists first observe the behaviour of an animal in its natural habi-
tat and derive problems faced by the animal’s neural system to produce
the behaviour. These problems are subsequently studied in neuro-biological
experiments under as natural circumstances as possible. Performing the
experiments usually involves returning to the first phase (observing natu-
ral behaviour) when the neuro-biological results raise questions on the be-
havioural studies. Therefore, an iterative process (in which behavioural and
neuro-biological experiments alternate) leads to the resolution of research
questions that include the following topics: signal detection and recognition
(e.g., calling songs or olfactory trails); co-ordination (e.g., in flight or when
walking); localisation (sound sources, landmarks, etc.); and orientation (e.g.,
in navigation).

The approach is usually centred around a particular common behaviour
faced by many animals, such as finding a mate, or avoiding predation. Sub-
sequently, a target animal is chosen to study the behaviour and its neural
underpinnings (Camhi, 1984). Although the particular details of neural
mechanisms for similar behaviours can vary significantly amongst different
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animal species, the nature of neural signalling is common in most animals
and many species are constrained by the same physical limitations of their
bodies and of their environment. For instance, different insect species have
compound eyes and share the same habitat in which they display similar
behaviours, such as feeding or target pursuit. Studying the neural mecha-
nism mediating behaviour in one animal species, therefore is likely to reveal
insight into the mechanisms of other species. In other words, neuro-ethology
relies on comparative study.

Next to the term ‘comparative study’ also the phrase ‘bottom-up ap-
proach’ is central to the field of neuro-ethology. The phrase indicates that
through studying relatively simple behaviours, such as orientation or local-
isation, neuro-ethologists eventually aim at explaining high-level behaviour
such as decision making and the orchestration of highly complex behavioural
patterns. We notice this approach contrasts the ‘top-down’ approach adopted
by traditional cognitive scientists and researchers of classical AI. Whereas
neuro-ethologists aim at understanding complex behaviours in terms of low-
level interactions of an animal with its environment, the representations-
focused cognitive science and AI researchers study high-level behaviour di-
rectly, while disregarding the underlying low-level behaviours that support
the cognitive processes. As an example we mention the research on fear
by LeDoux (1996) and co-workers. In the human brain he identified a cor-
tical and sub-cortical pathway mediating fear-responses. When presented
with a fearsome stimulus, a subject’s cortical pathway elicits the awareness
of fear and is therefore associated with high-level cognition. At the same
time, the much faster sub-cortical pathway triggers a non-conscious fight-
or-flight reaction which is associated with a low-level reactive response. The
low-level behaviour can be overruled by the high-level, cognitive behaviour,
but can never be replaced by it: the cognitive high road is too slow to
trigger a timely response to a fearsome stimulus. In summary, a low-level,
non-cognitive brain area is fundamental to a fear-response, even in humans.
This observation supports a bottom-up approach to intelligent behaviour,
as adopted in neuro-ethology.

Limitations of the neuro-ethological paradigm As was mentioned
before, neuro-biological and thus neuro-ethological experiments need a con-
trolled laboratory set-up in order to allow for meaningful measurements in
the animal’s brain. Using the existing techniques it is still impossible to
measure neural activity in freely moving animals. Instead, to obtain valid
stimulus-response characteristics, the animals that are investigated are usu-
ally placed in open-loop conditions, i.e., they are fixated and thus do not
receive feedback from their actions. For instance, the activity of movement-
sensitive neurons in flies is measured while the animal is fixated in a hollow
tube with wax (Mastebroek, Zaagman, and Lenting, 1980). While neuro-
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ethologists put a lot of effort in emulating as natural experimental conditions
as possible, still there exists a fundamental problem: it is unclear whether
the behaviour of animals and its neural activity is similar in open-loop and
closed-loop conditions, i.e., when freely moving or not.

Moreover, neuro-ethological research can not study multiple behaviours
in an animal simultaneously: again, in order to obtain valid stimulus-response
characteristics, complex behaviours are decomposed into simpler behavioural
patterns such as orientation or flight course stabilisation that are studied
separately (Camhi, 1984). The synthesis of neural activity for the com-
plex behaviour from the components is not a straightforward procedure,
i.e., neural mechanisms cannot simply be added to account for the explana-
tion of complex behaviour (Huber et al., 1998). Another potential risk in
neuro-ethology is assuming the existence of different neural mechanisms for
different behavioural patterns, whereas one neural mechanism can mediate
several behaviours. For instance, the phonotactic behaviour (sound-seeking)
of crickets consists of a sound recognition and localisation component. Webb
(1995) found that both behaviours are likely to be mediated by the same
neural structure (see also section 4).

In summary, neuro-ethological research faces two methodological prob-
lems: lack of ecological validity due to closed-loop experiments and the
decomposition of natural behaviour. We propose that embodied cognitive
science can relieve the problems by employing robots to model aspects of
animal behaviour. Robots can be used in closed-loop conditions and the
modelling aspect allows for the synthesis of behaviours.

4 Embodied cognitive science

From the previous sections we conclude that neuro-ethology treats some of
the shortcomings of traditional cognitive science. Section 2 showed the fo-
cus of traditional cognitive science and classical AI which was to describe
and synthesise high-level cognitive processes through computations on sym-
bolic representations. Their major shortcoming is the disregard of low-level
behaviour that does not require symbolic representations in its explana-
tion. Section 3 gave an introduction to the field of neuro-ethology that
fixates on the neural mechanisms underlying low-level behaviour in animals.
Drawbacks of the latter field include artificial experimental set-ups and the
decomposition of behaviour.

We argue that embodied cognitive science can combine the best of both
worlds. First, employing a neuro-ethological focus on low-level behaviour
provides a better understanding of how cognisers (Pylyshyn, 1984) interact
with the real-world and how they use their low-level behaviour as a foun-
dation for high-level cognitive processes. Second, the modelling techniques
from AI can be used to solve parts of the problems faced by neuro-ethology.

7

https://www.researchgate.net/publication/222501532_On_Robots_and_Flies_Modeling_the_visual_orientation_behavior_of_flies?el=1_x_8&enrichId=rgreq-4e0a0483-01ca-4965-9562-3f241d31ac73&enrichSource=Y292ZXJQYWdlOzIzODg0MDM7QVM6MTQyNDAzNjcxNDMzMjE2QDE0MTA5NjMwODk0MTY=
https://www.researchgate.net/publication/220693245_Computation_and_Cognition_Toward_a_Foundation_For_Cognitive_Science?el=1_x_8&enrichId=rgreq-4e0a0483-01ca-4965-9562-3f241d31ac73&enrichSource=Y292ZXJQYWdlOzIzODg0MDM7QVM6MTQyNDAzNjcxNDMzMjE2QDE0MTA5NjMwODk0MTY=


In the following, we shall elaborate on the arguments mentioned and by giv-
ing examples of current work in embodied cognitive science and the achieve-
ments.

Pfeifer and Scheier (1997) investigated a classification task in terms of
sensori-motor co-ordination. Traditionally, classification is viewed as the
mapping of an instance to a symbolic class representation (Estes, 1994).
For instance, when seeing a particular animal, the viewer creates a symbolic
representation of the animal and maps it to the class ‘dogs’. Alternatively,
Pfeifer and Scheier adopt a more ‘Gibsonian’ perspective on the task. They
interpret classification of objects in terms of the possible actions an agent can
perform with them: graspable objects vs non-graspable objects, pushable
objects vs non-pushable objects, etc. In an experiment a mobile robot was
placed in an arena with cylindrical objects from two classes: objects with
either a large or a small diameter. When the robot met an object, it started
to circle around the object and measured the angular velocity. Moreover,
the robot possessed a ‘tail’ by which it could grasp the objects with small
diameter, but not the large ones. Using Hebbian learning, a neural network
was trained that decided for the robot to grasp an object. The decision was
based on the angular velocity that was measured while circling the object. In
this approach, sensori-motor patterns of activity (time-series of sensor and
motor values), rather than symbols, constitute class representations. The
approach fits better to the way children and animals learn to classify objects
than the classical approach does (Smith, 1994). Moreover, the approach
describes how an agent (animal or robot) grounds the meaning of an object
class in its behaviour.

As a second example, we mention the work by Webb (1995; 1998) on
cricket phonotaxis. The work proposes a neural mechanism of female crick-
ets’ classification and localisation of male crickets’ calling songs. The mech-
anism was implemented on a robot model and yielded robust behaviour
comparable to that of real crickets. Again, the classification task (dis-
tinguishing between different calling songs, belonging to males of different
cricket species) was based on a behavioural response (approaching the con-
specific male), not on a symbolic classification. The work gives another
hint that symbolic representations are not always necessary to explain high-
level cognitive tasks (categorisation). Moreover, Webb’s approach to study-
ing cricket phonotaxis adds an important aspect to cognitive science and
neuro-ethology: robotic modelling. The approach relieves two problems of
neuro-ethology: first, robots can be used in closed-loop conditions, i.e., it is
possible to record the activity of the artificial neural mechanism that con-
trols the robot, while the robot can move freely in a desirable environment;
second, robots can be employed to model the orchestration of behaviours.
Again, activity in the robot’s artificial neural system can be recorded while
the robot performs various behaviours in parallel. For a more complete
treatment on using robots to model animals we refer to the work of Webb
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(1995; 1998; 1999).
Next we shall mention a few examples of robot models of animal be-

haviour and the neural mechanisms underlying it. Some of the models were
implemented in a physical robot, whereas others were built as computer sim-
ulations. Already in 1982 Arbib modelled visuo-motor co-ordination in frogs
and toads in a system called Rana computatrix. Some ten years later Cliff
(1991) modelled visually-guided behaviour of the hoverfly Syritta pipiens
in a computer simulator called SYCO (Syritta computatrix ). Other animals
that were investigated include cockroaches (Beer and Chiel, 1993), lampreys
(Ijspeert, Hallam, and Willshaw, 1999), salamanders (Ijspeert and Arbib,
2000), more flies (Franceschini, Pichon, and Blanes, 1992; Huber et al.,
1998), ants (Lambrinos et al., 2000), and bats (Peremans et al., 2000).

Applications Besides using robots in order to investigate animals, the
field of embodied cognitive science has produced a wide range of applications
by taking inspiration from biology. For instance, the field of behaviour-
based robotics (Arkin, 1998) employs principles of animal behaviour to the
design of autonomous systems (cars, wheelchairs, space rovers). The field of
evolutionary robotics (Harvey et al., 1997; Nolfi and Floreano, 2000) applies
the theory of evolution to the development of robot controllers. Finally we
mention the use of optic flow in visually-guided behaviour in robots (Weber,
Venkatesh, and Srinivasan, 1997; Srinivasan et al., 1997).

5 Discussion

In this paper we have discussed important aspects of traditional cognitive
science, classical artificial intelligence and neuro-ethology. We pointed out
to a few problems relating to the fields and showed that embodied cognitive
science can relieve some of the problems through employing robot modelling.
In fact, Clancey (1997) views the researchers of embodied cognitive science
as a new generation of cyberneticists (Wiener, 1948) to stress the impor-
tance of the perception-action loop in embodied cognitive science research.
Cybernetics studied the control of low-level behaviour in animals and ma-
chines already in the 1940s and 1950s. However, the artificial systems built
by early cyberneticists (e.g., Walter, 1950) used simple controllers based on
analogue hardware. In contrast, with present-day computing power, the use
of neural network models in robots is facilitated.

Converting from a representational to an embodied perspective on intel-
ligence requires some adaptive power. Modesty is called for when adopting
a bottom-up approach to cognition, but people will be astounded by the in-
genuity of the neural mechanisms underlying low-level behaviour in humans
and other animals.
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Limitations Using artificial systems (robots or computer simulations) to
study real animals has some limitations of which we mention three. First,
the role of noise is different in natural and artificial systems. For instance,
photon absorption noise is Poisson distributed (Land, 1981), which does
not necessarily have to be the case in artificial visual sensors. Second, the
motor system of robots is usually extremely simplified which results in a
difference between the sensory feedback experienced by robots and animals
moving in the same environment. If, however, work focusses on the mo-
tor behaviour instead, the sensory processing is usually limited (Beer and
Chiel, 1993; Ijspeert and Arbib, 2000). Third, an animal might use sensory
input or environmental clues that are not modelled in the artificial system
used. For instance, the role of the ultra-violet component of sunlight plays
an important role in insect navigation (Lambrinos et al., 2000). In a similar
way, other sensory channels that we are currently unaware of might be of
importance for the behaviour. Not implementing these channels in a robot
model might lead to wrong explanations of the behaviour. This problem is
even larger when computer simulations are used instead of physical robots.
Computer simulations might represent a too simple environment and miss
important sensory information. Instead, physical robots interact with the
same environment as real animals and therefore are theoretically able to
receive all sensory information available to real animals. The term ‘compar-
ative study’ therefore also applies to embodied cognitive science.

All of the limitations mentioned above are general problems of the sci-
entific method of modelling – they do not apply just to embodied cognitive
science. Modelling involves abstracting away from the real system under
investigation. All simplifications in the design of the model should be ac-
counted for. For instance, using two wheels to model the motor system of
an animal can be justified when yaw behaviour (rotation in the horizontal
plain) is studied. Moreover, modelling is usually performed in an incremen-
tal fashion (adding more and more components to the model). In fact, the
limitations could serve as the explanatory power of embodied cognitive sci-
ence. For instance, when reproducing behaviour in a robot fails with the
neural mechanism assumed to mediate the behaviour in real animals, this
might indicate that more sensory channels are involved, or that the role of
the actuators is more important than expected.

6 Conclusions

Altogether, we showed that neuro-ethology helps transform the perspective
on cognitive science from one of representations to one of embodiment and
situatedness. The method of applying robots to model animal behaviour
and the neural mechanisms underlying the behaviour relieves some central
methodological problems in traditional cognitive science and neuro-ethology.
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First we noticed that traditional cognitive science and classical artificial in-
telligence underestimate the role of low-level real-world interaction in pro-
ducing intelligent behaviour, whereas embodied cognitive science adopts a
bottom-up approach starting with the low-level aspects of behaviour. Sec-
ond we stressed that the problems in neuro-ethology regarding recording
neural activity from living animals can be prevailed by using robot models.
The use of robot models allows for comparative study of animals species.
Summarising, embodied cognitive science combines the best of two worlds:
traditional cognitive science and neuro-ethology.

Future work In future, we think embodied cognitive science could con-
tribute to the scientific community by focusing on the relation between
high-level cognitive tasks and the underlying low-level behaviour support-
ing it. For instance, the use of eye movements (low-level behaviour) is
pivotal in understanding how high-level tasks such as face recognition are
accomplished (Ballard, 1991). The grounding of symbolic representations is
another important topic. Embodied cognitive science requires a change of
mind (bottom-up instead of top-down approach) but offers important new
insights to the study of intelligence.
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Ijspeert, A. and Arbib, M. (2000). Visual tracking in simulated salamander
locomotion. From Animals to Animats, Proceedings of the 6th Interna-
tional Conference on the Simulation of Adaptive Behavior (eds. J. Meyer,
A. Berthoz, D. Floreano, H. Roitblat, and S. Wilson), pp. 88–97, MIT Press,
Cambridge.

Ijspeert, A., Hallam, J., and Willshaw, D. (1999). Evolving swimming con-
trollers for a simulated lamprey with inspiration from neurobiology. Adap-
tive Behavior, Vol. 7, No. 2, pp. 151–172.

Kalat, J. (2001). Biological psychology. Brooks/Cole publishing company,
Pacific Grove, 7th edition.

Kandel, E. (1976). Cellular basis of behavior. W.H. Freeman and Co., San
Francisco.

Kirsh, D. (1991). Today the earwig, tomorrow man? Artificial intelligence,
Vol. 47, pp. 161–184.
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