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Could a machine think? Could the mind itself be a thinking machine? The computer 

revolution transformed discussion of these questions, offering our best prospects yet for 

machines that emulate reasoning, decision-making, problem solving, perception, linguistic 

comprehension, and other characteristic mental processes. Advances in computing raise the 

prospect that the mind itself is a computational system—a position known as the 

computational theory of mind (CTM).Computationalists are researchers who endorse 

CTM, at least as applied to certain important mental processes. CTM played a central role 

within cognitive science during the 1960s and 1970s. For many years, it enjoyed orthodox 

status. More recently, it has come under pressure from various rival paradigms. A key task 

facing computationalists is to explain what one means when one says that the mind 

“computes”. A second task is to argue that the mind “computes” in the relevant sense. A 

third task is to elucidate how computational description relates to other common types of 

description, especially neurophysiological description (which cites neurophysiological 

properties of the organism’s brain or body) and intentional description (which cites 

representational properties of mental states). 
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1. Turing machines 
The intuitive notions of computation and algorithm are central to mathematics. Roughly 

speaking, an algorithm is an explicit, step-by-step procedure for answering some question 

or solving some problem. An algorithm provides routine mechanical instructions dictating 

how to proceed at each step. Obeying the instructions requires no special ingenuity or 

creativity. For example, the familiar grade-school algorithms describe how to compute 

addition, multiplication, and division. Until the early twentieth century, mathematicians 

relied upon informal notions of computation and algorithm without attempting anything 

like a formal analysis. Developments in the foundations of mathematics eventually 

impelled logicians to pursue a more systematic treatment. Alan Turing’s landmark paper 

“On Computable Numbers, With an Application to the Entscheidungsproblem” (Turing 

1936) offered the analysis that has proved most influential. 

A Turing machine is an abstract model of an idealized computing device with unlimited 

time and storage space at its disposal. The device manipulates symbols, much as a human 

computing agent manipulates pencil marks on paper during arithmetical computation. 

Turing says very little about the nature of symbols. He assumes that primitive symbols are 

drawn from a finite alphabet. He also assumes that symbols can be inscribed or erased at 

“memory locations”. Turing’s model works as follows: 

 There are infinitely many memory locations, arrayed in a linear structure. 

Metaphorically, these memory locations are “cells” on an infinitely long “paper 

tape”. More literally, the memory locations might be physically realized in various 

media (e.g., silicon chips). 

 There is a central processor, which can access one memory location at a time. 

Metaphorically, the central processor is a “scanner” that moves along the paper tape 

one “cell” at a time. 
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 The central processor can enter into finitely many machine states. 

 The central processor can perform four elementary operations: write a symbol at a 

memory location; erase a symbol from a memory location; access the next memory 

location in the linear array (“move to the right on the tape”); access the previous 

memory location in the linear array (“move to the left on the tape”). 

 Which elementary operation the central processor performs depends entirely upon 

two facts: which symbol is currently inscribed at the present memory location; and 

the scanner’s own current machine state. 

 A machine table dictates which elementary operation the central processor 

performs, given its current machine state and the symbol it is currently accessing. 

The machine table also dictates how the central processor’s machine state changes 

given those same factors. Thus, the machine table enshrines a finite set of routine 

mechanical instructions governing computation. 

Turing translates this informal description into a rigorous mathematical model. For more 

details, see the entry on Turing machines. 

Turing motivates his approach by reflecting on idealized human computing agents. Citing 

finitary limits on our perceptual and cognitive apparatus, he argues that any symbolic 

algorithm executed by a human can be replicated by a suitable Turing machine. He 

concludes that the Turing machine formalism, despite its extreme simplicity, is powerful 

enough to capture all humanly executable mechanical procedures over symbolic 

configurations. Subsequent discussants have almost universally agreed. 

Turing computation is often described as digital rather than analog. What this means is not 

always so clear, but the basic idea is usually that computation operates over discrete 

configurations. By comparison, many historically important algorithms operate over 

continuously variable configurations. For example, Euclidean geometry assigns a large role 

to ruler-and-compass constructions, which manipulate geometric shapes. For any shape, 

one can find another that differs to an arbitrarily small extent. Symbolic configurations 

manipulated by a Turing machine do not differ to arbitrarily small extent. Turing machines 

operate over discrete strings of elements (digits) drawn from a finite alphabet. One 

recurring controversy concerns whether the digital paradigm is well-suited to model mental 

activity or whether an analog paradigm would instead be more fitting (MacLennan 2012; 

Piccinini and Bahar 2013). 

Besides introducing Turing machines, Turing (1936) proved several seminal mathematical 

results involving them. In particular, he proved the existence of a universal Turing 

machine (UTM). Roughly speaking, a UTM is a Turing machine that can mimic any other 

Turing machine. One provides the UTM with a symbolic input that codes the machine table 

for Turing machine M. The UTM replicates M’s behavior, executing instructions enshrined 

by M’s machine table. In that sense, the UTM is a programmable general purpose 

computer. To a first approximation, all personal computers are also general purpose: they 

can mimic any Turing machine, when suitably programmed. The main caveat is that 

physical computers have finite memory, whereas a Turing machine has unlimited memory. 

http://plato.stanford.edu/entries/turing-machine/
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More accurately, then, a personal computer can mimic any Turing machine until it exhausts 

its limited memory supply. 

Turing’s discussion helped lay the foundations for computer science, which seeks to design, 

build, and understand computing systems. As we know, computer scientists can now build 

extremely sophisticated computing machines. All these machines implement something 

resembling Turing computation, although the details differ from Turing’s simplified model. 

2. Artificial intelligence 
Rapid progress in computer science prompted many, including Turing, to contemplate 

whether we could build a computer capable of thought. Artificial Intelligence (AI) aims to 

construct “thinking machinery”. More precisely, it aims to construct computing machines 

that execute core mental tasks such as reasoning, decision-making, problem solving, and 

so on. During the 1950s and 1960s, this goal came to seem increasingly realistic 

(Haugeland 1985). 

Early AI research emphasized logic. Researchers sought to “mechanize” deductive 

reasoning. A famous example was the Logic Theorist computer program (Newell and 

Simon 1956), which proved 38 of the first 52 theorems from Principia 

Mathematica (Whitehead and Russell 1925). In one case, it discovered a simpler proof 

than Principia’s. 

Early success of this kind stimulated enormous interest inside and outside the academy. 

Many researchers predicted that intelligent machines were only a few years away. 

Obviously, these predictions have not been fulfilled. Intelligent robots do not yet walk 

among us. Even relatively low-level mental processes such as perception vastly exceed the 

capacities of current computer programs. When confident predictions of thinking machines 

proved too optimistic, many observers lost interest or concluded that AI was a fool’s errand. 

Nevertheless, the decades have witnessed gradual progress. One striking success was 

IBM’s Deep Blue, which defeated chess champion Gary Kasparov in 1997. Another major 

success was the driverless car Stanley (Thrun, Montemerlo, Dahlkamp, et al. 2006), which 

completed a 132-mile course in the Mojave Desert, winning the 2005 Defense Advanced 

Research Projects Agency (DARPA) Grand Challenge. A less flashy success story is the 

vast improvement in speech recognition algorithms. 

One problem that dogged early work in AI is uncertainty. Nearly all reasoning and 

decision-making operates under conditions of uncertainty. For example, you may need to 

decide whether to go on a picnic while being uncertain whether it will rain. Bayesian 

decision theory is the standard mathematical model of decision-making under uncertainty. 

Uncertainty is codified through probability. Precise rules dictate how to update 

probabilities in light of new evidence and how to select actions in light of probabilities and 

utilities. (See the entries Bayes’s theorem and normative theories of rational choice: 

expected utility for details.) In the 1980s and 1990s, technological and conceptual 

developments enabled efficient computer programs that implement or approximate 

Bayesian inference in realistic scenarios. An explosion of Bayesian AI ensued (Thrun, 

http://plato.stanford.edu/entries/bayes-theorem/
http://plato.stanford.edu/entries/rationality-normative-utility/
http://plato.stanford.edu/entries/rationality-normative-utility/
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Burgard, and Fox 2006), including the aforementioned advances in speech recognition and 

driverless vehicles. Tractable algorithms that handle uncertainty are a major achievement 

of contemporary AI, and possibly a harbinger of more impressive future progress. 

Some philosophers insist that computers, no matter how sophisticated they become, will at 

bestmimic rather than replicate thought. A computer simulation of the weather does not 

really rain. A computer simulation of flight does not really fly. Even if a computing system 

could simulate mental activity, why suspect that it would constitute the genuine article? 

Turing (1950) anticipated these worries and tried to defuse them. He proposed a scenario, 

now called the Turing Test, where one evaluates whether an unseen interlocutor is a 

computer or a human. A computer passes the Turing test if one cannot determine that it is 

a computer. Turing proposed that we abandon the question “Could a computer think?” as 

hopelessly vague, replacing it with the question “Could a computer pass the Turing test?”. 

Turing’s discussion has received considerable attention, proving especially influential 

within AI. Ned Block (1981) offers an influential critique. He argues that certain possible 

machines pass the Turing test even though these machines do not come close to genuine 

thought or intelligence. See the entry the Turing test for discussion of Block’s objection 

and other issues surrounding the Turing Test. 

For more on AI, see the entry logic and artificial intelligence. For much more detail, see 

Russell and Norvig (2010). 

3. The classical computational theory of mind 
Warren McCulloch and Walter Pitts (1943) first suggested that something resembling the 

Turing machine might provide a good model for the mind. In the 1960s, Turing 

computation became central to the emerging interdisciplinary initiative cognitive science, 

which studies the mind by drawing upon psychology, computer science (especially AI), 

linguistics, philosophy, economics (especially game theory and behavioral economics), 

anthropology, and neuroscience. The label classical computational theory of mind (which 

we will abbreviate as CCTM) is now fairly standard. According to CCTM, the mind is a 

computational system similar in important respects to a Turing machine, and core mental 

processes (e.g., reasoning, decision-making, and problem solving) are computations similar 

in important respects to computations executed by a Turing machine. These formulations 

are imprecise. CCTM is best seen as a family of views, rather than a single well-defined 

view.[1] 

It is common to describe CCTM as embodying “the computer metaphor”. This description 

is doubly misleading. 

First, CCTM is better formulated by describing the mind as a “computing system” or a 

“computational system” rather than a “computer”. As David Chalmers (2011) notes, 

describing a system as a “computer” strongly suggests that the system is programmable. 

As Chalmers also notes, one need not claim that the mind is programmable simply because 

one regards it as a Turing-style computational system. (Most Turing machines are not 

programmable.) Thus, the phrase “computer metaphor” strongly suggests theoretical 

http://plato.stanford.edu/entries/turing-test/
http://plato.stanford.edu/entries/logic-ai/
http://plato.stanford.edu/entries/computational-mind/notes.html#note-1
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commitments that are inessential to CCTM. The point here is not just terminological. 

Critics of CCTM often object that the mind is not a programmable general purpose 

computer (Churchland, Koch, and Sejnowski 1990). Since classical computationalists need 

not claim (and usually do not claim) that the mind is a programmable general purpose 

computer, the objection is misdirected. 

Second, CCTM is not intended metaphorically. CCTM does not simply hold that the mind 

is like a computing system. CCTM holds that the mind literally is a computing system. Of 

course, the most familiar artificial computing systems are made from silicon chips or 

similar materials, whereas the human body is made from flesh and blood. But CCTM holds 

that this difference disguises a more fundamental similarity, which we can capture through 

a Turing-style computational model. In offering such a model, we prescind from physical 

details. We attain an abstract computational description that could be physically 

implemented in diverse ways (e.g., through silicon chips, or neurons, or pulleys and levers). 

CCTM holds that a suitable abstract computational model offers a literally true description 

of core mental processes. 

It is common to summarize CCTM through the slogan “the mind is a Turing machine”. 

This slogan is also somewhat misleading, because no one regards Turing’s precise 

formalism as a plausible model of mental activity. The formalism seems too restrictive in 

several ways: 

 Turing machines execute pure symbolic computation. The inputs and outputs are 

symbols inscribed in memory locations. In contrast, the mind receives sensory 

input (e.g., retinal stimulations) and produces motor output (e.g., muscle 

activations). A complete theory must describe how mental computation interfaces 

with sensory inputs and motor outputs. 

 A Turing machine has infinite discrete memory capacity. Ordinary biological 

systems have finite memory capacity. A plausible psychological model must replace 

the infinite memory store with a large but finite memory store 

 Modern computers have random access memory: addressable memory locations 

that the central processor can directly access. Turing machine memory is not 

addressable. The central processor can access a location only by sequentially 

accessing intermediate locations. Computation without addressable memory is 

hopelessly inefficient. For that reason, C.R. Gallistel and Adam King (2009) argue 

that addressable memory gives a better model of the mind than non-addressable 

memory. 

 A Turing machine has a central processor that operates serially, executing one 

instruction at a time. Other computational formalisms relax this assumption, 

allowing multiple processing units that operate in parallel. Classical 

computationalists can allow parallel computations (Fodor and Pylyshyn 1988; 

Gallistel and King 2009: 174). See Gandy (1980) and Sieg (2009) for general 

mathematical treatments that encompass both serial and parallel computation. 

 Turing computation is deterministic: total computational state determines 

subsequent computational state. One might instead allow stochastic computations. 
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In a stochastic model, current state does not dictate a unique next state. Rather, there 

is a certain probability that the machine will transition from one state to another. 

CCTM claims that mental activity is “Turing-style computation”, allowing these and other 

departures from Turing’s own formalism. 

3.1 Machine functionalism 

Hilary Putnam (1967) introduced CCTM into philosophy. He contrasted his position 

with logical behaviorism and type-identity theory. Each position purports to reveal the 

nature of mental states, including propositional attitudes (e.g., beliefs), sensations (e.g., 

pains), and emotions (e.g., fear). According to logical behaviorism, mental states are 

behavioral dispositions. According to type-identity theory, mental states are brain states. 

Putnam advances an opposing functionalist view, on which mental states are functional 

states. According to functionalism, a system has a mind when the system has a 

suitable functional organization. Mental states are states that play appropriate roles in the 

system’s functional organization. Each mental state is individuated by its interactions with 

sensory input, motor output, and other mental states. 

Functionalism offers notable advantages over logical behaviorism and type-identity theory: 

 Behaviorists want to associate each mental state with a characteristic pattern of 

behavior—a hopeless task, because individual mental states do not usually have 

characteristic behavioral effects. Behavior almost always results from distinct 

mental states operating together (e.g., a belief and a desire). Functionalism avoids 

this difficulty by individuating mental states through characteristic relations not 

only to sensory input and behavior but also to one another. 

 Type-identity theorists want to associate each mental state with a characteristic 

physical or neurophysiological state. Putnam casts this project into doubt by arguing 

that mental states are multiply realizable: the same mental state can be realized by 

diverse physical systems, including not only terrestrial creatures but also 

hypothetical creatures (e.g., a silicon-based Martian). Functionalism is tailor-made 

to accommodate multiple realizability. According to functionalism, what matters 

for mentality is a pattern of organization, which could be physically realized in 

many different ways. See the entry multiple realizability for further discussion of 

this argument. 

Putnam defends a brand of functionalism now called machine functionalism. He 

emphasizes probabilistic automata, which are similar to Turing machines except that 

transitions between computational states are stochastic. He proposes that mental activity 

implements a probabilistic automaton and that particular mental states are machine states 

of the automaton’s central processor. The machine table specifies an appropriate functional 

organization, and it also specifies the role that individual mental states play within that 

functional organization. In this way, Putnam combines functionalism with CCTM. 

Machine functionalism faces several problems. One problem, highlighted by Ned Block 

and Jerry Fodor (1972), concerns the productivity of thought. A normal human can entertain 

http://plato.stanford.edu/entries/multiple-realizability/
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a potential infinity of propositions. Machine functionalism identifies mental states with 

machine states of a probabilistic automaton. Since there are only finitely many machine 

states, there are not enough machine states to pair one-one with possible mental states of a 

normal human. Of course, an actual human will only ever entertain finitely many 

propositions. However, Block and Fodor contend that this limitation reflects limits on 

lifespan and memory, rather than (say) some psychological law that restricts the class of 

humanly entertainable propositions. A probabilistic automaton is endowed with unlimited 

time and memory capacity yet even still has only finitely many machine states. Apparently, 

then, machine functionalism mislocates the finitary limits upon human cognition. 

Another problem for machine functionalism, also highlighted by Block and Fodor (1972), 

concerns the systematicity of thought. An ability to entertain one proposition is correlated 

with an ability to think other propositions. For example, someone who can entertain the 

thought that John loves Marycan also entertain the thought that Mary loves John. Thus, 

there seem to be systematic relations between mental states. A good theory should reflect 

those systematic relations. Yet machine functionalism identifies mental states with 

unstructured machines states, which lack the requisite systematic relations to another. For 

that reason, machine functionalism does not explain systematicity. In response to this 

objection, machine functionalists might deny that they are obligated to explain 

systematicity. Nevertheless, the objection suggests that machine functionalism neglects 

essential features of human mentality. A better theory would explain those features in a 

principled way. 

While the productivity and systematicity objections to machine functionalism are perhaps 

not decisive, they provide strong impetus to pursue an improved version of CCTM. See 

Block (1978) for additional problems facing machine functionalism and functionalism 

more generally. 

3.2 The representational theory of mind 

Fodor (1975, 1981, 1987, 1990, 1994, 2008) advocates a version of CCTM that 

accommodates systematicity and productivity much more satisfactorily. He shifts attention 

to the symbols manipulated during Turing-style computation. 

An old view, stretching back at least to William of Ockham’s Summa Logicae, holds that 

thinking occurs in a language of thought (sometimes called Mentalese). Fodor revives this 

view. He postulates a system of mental representations, including both primitive 

representations and complex representations formed from primitive representations. For 

example, the primitive Mentalese words JOHN, MARY, and LOVES can combine to form 

the Mentalese sentence JOHN LOVES MARY. Mentalese is compositional: the meaning 

of a complex Mentalese expression is a function of the meanings of its parts and the way 

those parts are combined. Propositional attitudes are relations to Mentalese symbols. Fodor 

calls this view the representational theory of mind (RTM). Combining RTM with CCTM, 

he argues that mental activity involves Turing-style computation over the language of 

thought. Mental computation stores Mentalese symbols in memory locations, manipulating 

those symbols in accord with mechanical rules. 
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A prime virtue of RTM is how readily it accommodates productivity and systematicity: 

Productivity: RTM postulates a finite set of primitive Mentalese expressions, combinable 

into a potential infinity of complex Mentalese expressions. A thinker with access to 

primitive Mentalese vocabulary and Mentalese compounding devices has the potential to 

entertain an infinity of Mentalese expressions. She therefore has the potential to instantiate 

infinitely many propositional attitudes (neglecting limits on time and memory). 

Systematicity: According to RTM, there are systematic relations between which 

propositional attitudes a thinker can entertain. For example, suppose I can think that John 

loves Mary. According to RTM, my doing so involves my standing in some relation R to a 

Mentalese sentence JOHN LOVES MARY, composed of Mentalese words JOHN, 

LOVES, and MARY combined in the right way. If I have this capacity, then I also have the 

capacity to stand in relation R to the distinct Mentalese sentence MARY LOVES JOHN, 

thereby thinking that Mary loves John. So the capacity to think that John loves Mary is 

systematically related to the capacity to think that Mary loves John. 

By treating propositional attitudes as relations to complex mental symbols, RTM explains 

both productivity and systematicity. 

CCTM+RTM differs from machine functionalism in several other respects. First, machine 

functionalism is a theory of mental states in general, while RTM is only a theory of 

propositional attitudes. Second, proponents of CCTM+RTM need not say that propositional 

attitudes are individuated functionally. As Fodor (2000: 105, fn. 4) notes, we must 

distinguish computationalism(mental processes are computational) 

from functionalism (mental states are functional states). Machine functionalism endorses 

both doctrines. CCTM+RTM endorses only the first. Unfortunately, many philosophers 

still mistakenly assume that computationalism entails a functionalist approach to 

propositional attitudes (see Piccinini 2004 for discussion). 

Philosophical discussion of RTM tends to focus mainly on high-level human thought, 

especially belief and desire. However, CCTM+RTM is applicable to a much wider range 

of mental states and processes. Many cognitive scientists apply it to non-human animals. 

For example, Gallistel and King (2009) apply it to certain invertebrate phenomena (e.g., 

honeybee navigation). Even confining attention to humans, one can apply CCTM+RTM 

to subpersonal processing. Fodor (1983) argues that perception involves a subpersonal 

“module” that converts retinal input into Mentalese symbols and then performs 

computations over those symbols. Thus, talk about a language of thought is potentially 

misleading, since it suggests a non-existent restriction to higher-level mental activity. 

Also potentially misleading is the description of Mentalese as a language, which suggests 

that all Mentalese symbols resemble expressions in a natural language. Many philosophers, 

including Fodor, sometimes seem to endorse that position. However, there are possible 

non-propositional formats for Mentalese symbols. Proponents of CCTM+RTM can adopt 

a pluralistic line, allowing mental computation to operate over items akin to images, maps, 

diagrams, or other non-propositional representations (Johnson-Laird 2004: 187; 

McDermott 2001: 69; Pinker 2005: 7; Sloman 1978: 144–176). The pluralistic line seems 
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especially plausible as applied to subpersonal processes (such as perception) and non-

human animals. Michael Rescorla (2009a,b) surveys research on cognitive maps (Tolman 

1948; O’Keefe and Nadel 1978; Gallistel 1990), suggesting that some animals may 

navigate by computing over mental representations more similar to maps than sentences. 

Elisabeth Camp (2009), citing research on baboon social interaction (Cheney and Seyfarth 

2007), argues that baboons may encode social dominance relations through non-sentential 

tree-structured representations. 

CCTM+RTM is schematic. To fill in the schema, one must provide detailed computational 

models of specific mental processes. A complete model will: 

 describe the Mentalese symbols manipulated by the process; 

 isolate elementary operations that manipulate the symbols (e.g., inscribing a symbol 

in a memory location); and 

 delineate mechanical rules governing application of elementary operations. 

By providing a detailed computational model, we decompose a complex mental process 

into a series of elementary operations governed by precise, routine instructions. 

CCTM+RTM remains neutral in the traditional debate between physicalism and substance 

dualism. A Turing-style model proceeds at a very abstract level, not saying whether mental 

computations are implemented by physical stuff or Cartesian soul-stuff (Block 1983: 522). 

In practice, all proponents of CCTM+RTM embrace a broadly physicalist outlook. They 

hold that mental computations are implemented not by soul-stuff but rather by the brain. 

On this view, Mentalese symbols are realized by neural states, and computational 

operations over Mentalese symbols are realized by neural processes. Ultimately, physicalist 

proponents of CCTM+RTM must produce empirically well-confirmed theories that explain 

how exactly neural activity implements Turing-style computation. As Gallistel and King 

(2009) emphasize, we do not currently have such theories—though see Zylberberg, 

Dehaene, Roelfsema, and Sigman (2011) for some speculations. 

Fodor (1975) advances CCTM+RTM as a foundation for cognitive science. He discusses 

mental phenomena such as decision-making, perception, and linguistic processing. In each 

case, he maintains, our best scientific theories postulate Turing-style computation over 

mental representations. In fact, he argues that our only viable theories have this form. He 

concludes that CCTM+RTM is “the only game in town”. Many cognitive scientists argue 

along similar lines. C.R. Gallistel and Adam King (2009), Philip Johnson-Laird (1988), 

Allen Newell and Herbert Simon (1976), and Zenon Pylyshyn (1984) all recommend 

Turing-style computation over mental symbols as the best foundation for scientific 

theorizing about the mind. 

4. Neural networks 
In the 1980s, connectionism emerged as a prominent rival to classical computationalism. 

Connectionists draw inspiration from neurophysiology rather than logic and computer 

science. They employ computational models, neural networks, that differ significantly 
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from Turing-style models. A neural network is a collection of interconnected nodes. Nodes 

fall into three categories: inputnodes, output nodes, and hidden nodes (which mediate 

between input and output nodes). Nodes have activation values, given by real numbers. 

One node can bear a weighted connection to another node, also given by a real number. 

Activations of input nodes are determined exogenously: these are the inputs to 

computation. Total input activation of a hidden or output node is a weighted sum of the 

activations of nodes feeding into it. Activation of a hidden or output node is a function of 

its total input activation; the particular function varies with the network. During neural 

network computation, waves of activation propagate from input nodes to output nodes, as 

determined by weighted connections between nodes. 

In a feedforward network, weighted connections flow only in one direction. Recurrent 

networks have feedback loops, in which connections emanating from hidden units circle 

back to hidden units. Recurrent networks are less mathematically tractable than 

feedforward networks. However, they figure crucially in psychological modeling of various 

phenomena, such as phenomena that involve some kind of memory (Elman 1990). 

Weights in a neural network are typically mutable, evolving in accord with a learning 

algorithm. The literature offers various learning algorithms, but the basic idea is usually to 

adjust weights so that actual outputs gradually move closer to the target outputs one would 

expect for the relevant inputs. The backpropagation algorithm is a widely used algorithm 

of this kind (Rumelhart, Hinton, and Williams 1986). 

Connectionism traces back to McCulloch and Pitts (1943), who studied networks of 

interconnected logic gates (e.g., AND-gates and OR-gates). One can view a network of 

logic gates as a neural network, with activations confined to two values (0 and 1) and 

activation functions given by the usual truth-functions. McCulloch and Pitts advanced logic 

gates as idealized models of individual neurons. Their discussion exerted a profound 

influence on computer science (von Neumann 1945). Modern digital computers are simply 

networks of logic gates. Within cognitive science, however, researchers usually focus upon 

networks whose elements are more “neuron-like” than logic gates. In particular, modern-

day connectionists typically emphasize analog neural networks whose nodes take 

continuous rather than discrete activation values. Some authors even use the phrase “neural 

network” so that it exclusively denotes such networks. 

Neural networks received relatively scant attention from cognitive scientists during the 

1960s and 1970s, when Turing-style models dominated. The 1980s witnessed a huge 

resurgence of interest in neural networks, especially analog neural networks, with the two-

volume Parallel Distributed Processing (Rumelhart, McClelland, and the PDP research 

group, 1986; McClelland, Rumelhart, and the PDP research group, 1987) serving as a 

manifesto. Researchers constructed connectionist models of diverse phenomena: object 

recognition, speech perception, sentence comprehension, cognitive development, and so 

on. Impressed by connectionism, many researchers concluded that CCTM+RTM was no 

longer “the only game in town”. 
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For a detailed overview of neural networks, see Haykin (2008). For a user-friendly 

introduction, with an emphasis on psychological applications, see Marcus (2003). 

4.1 Relation between neural networks and classical 

computation 

Neural networks have a very different “feel” than classical (i.e., Turing-style) models. Yet 

classical computation and neural network computation are not mutually exclusive: 

 One can implement a neural network in a classical model. Indeed, every neural 

network ever physically constructed has been implemented on a digital computer. 

 One can implement a classical model in a neural network. Modern digital computers 

implement Turing-style computation in networks of logic gates. Alternatively, one 

can implement Turing-style computation using an analog recurrent neural network 

whose nodes take continuous activation values (Siegelmann and Sontag 1995). 

Although some researchers suggest a fundamental opposition between classical 

computation and neural network computation, it seems more accurate to identify two 

modeling traditions that overlap in certain cases but not others (cf. Boden 1991; Piccinini 

2008b). In this connection, it is also worth noting that classical computationalism and 

connectionist computationalism have their common origin in the work of McCulloch and 

Pitts. 

Philosophers often say that classical computation involves “rule-governed symbol 

manipulation” while neural network computation is non-symbolic. The intuitive picture is 

that “information” in neural networks is globally distributed across the weights and 

activations, rather than concentrated in localized symbols. However, the notion of 

“symbol” itself requires explication, so it is often unclear what theorists mean by describing 

computation as symbolic versus non-symbolic. As mentioned in §1, the Turing formalism 

places very few conditions on “symbols”. Regarding primitive symbols, Turing assumes 

just that there are finitely many of them and that they can be inscribed in read/write memory 

locations. Neural networks can also manipulate symbols satisfying these two conditions: 

as just noted, one can implement a Turing-style model in a neural network. 

Many discussions of the symbolic/non-symbolic dichotomy employ a more robust notion 

of “symbol”. On the more robust approach, a symbol is the sort of thing that represents a 

subject matter. Thus, something is a symbol only if it has semantic or representational 

properties. If we employ this more robust notion of symbol, then the symbolic/non-

symbolic distinction cross-cuts the distinction between Turing-style computation and 

neural network computation. A Turing machine need not employ symbols in the more 

robust sense. As far as the Turing formalism goes, symbols manipulated during Turing 

computation need not have representational properties (Chalmers 2011). Conversely, a 

neural network can manipulate symbols with representational properties. Indeed, an analog 

neural network can manipulate symbols that have a combinatorial syntax and semantics 

(Horgan and Tienson 1996; Marcus 2003). 

http://plato.stanford.edu/entries/computational-mind/#TurMac
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Following Steven Pinker and Alan Prince (1988), we may distinguish between eliminative 

connectionism and implementationist connectionism. 

Eliminative connectionists advance connectionism as a rival to classical computationalism. 

They argue that the Turing formalism is irrelevant to psychological explanation. Often, 

though not always, they seek to revive the associationist tradition in psychology, a tradition 

that CCTM had forcefully challenged. Often, though not always, they attack the mentalist, 

nativist linguistics pioneered by Noam Chomsky (1965). Often, though not always, they 

manifest overt hostility to the very notion of mental representation. But the defining feature 

of eliminative connectionism is that it uses neural networks as replacements for Turing-

style models. Eliminative connectionists view the mind as a computing system of a 

radically different kind than the Turing machine. A few authors explicitly espouse 

eliminative connectionism (Churchland 1989; Rumelhart and McClelland 1986; Horgan 

and Tienson 1996), and many others incline towards it. 

Implementationist connectionism is a more ecumenical position. It allows a potentially 

valuable role for both Turing-style models and neural networks, operating harmoniously at 

different levels of description (Marcus 2003; Smolensky 1988). A Turing-style model is 

higher-level, whereas a neural network model is lower-level. The neural network 

illuminates how the brain implements the Turing-style model, just as a description in terms 

of logic gates illuminates how a personal computer executes a program in a high-level 

programming language. 

4.2 Arguments for connectionism 

Connectionism excites many researchers because of the analogy between neural networks 

and the brain. Nodes resemble neurons, while connections between nodes resemble 

synapses. Connectionist modeling therefore seems more “biologically plausible” than 

classical modeling. A connectionist model of a psychological phenomenon apparently 

captures (in an idealized way) how interconnected neurons might generate the 

phenomenon. 

These appeals to biology are problematic, because most connectionist networks are actually 

not so biologically plausible (Bechtel and Abramson 2002: 341–343; Bermúdez 2010: 237–

239; Clark 2014: 87–89; Harnish 2002: 359–362). For example, real neurons are much 

more heterogeneous than the interchangeable nodes that figure in typical connectionist 

networks. It is far from clear how, if at all, properties of the interchangeable nodes map 

onto properties of real neurons. Especially problematic from a biological perspective is the 

backpropagation algorithm. The algorithm requires that weights between nodes can vary 

between excitatory and inhibitory, yet actual synapses cannot so vary (Crick and Asanuma 

1986). Moreover, the algorithm assumes target outputs supplied exogenously by 

modelers who know the desired answer. In that sense, learning is supervised. Very little 

learning in actual biological systems involves anything resembling supervised training. 

Even if connectionist models are not biologically plausible, they might still 

be more biologically plausible than classical models. They certainly seem closer than 
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Turing-style models, in both details and spirit, to neurophysiological description. Many 

cognitive scientists worry that CCTM reflects a misguided attempt at imposing the 

architecture of digital computers onto the brain. Some doubt that the brain implements 

anything resembling digital computation, i.e., computation over discrete configurations of 

digits (Piccinini and Bahar 2013). Others doubt that brains display clean Turing-style 

separation between central processor and read/write memory (Dayan 2009). Connectionist 

models fare better on both scores: they do not require computation over discrete 

configurations of digits, and they do not postulate a clean separation between central 

processor and read/write memory. 

Classical computationalists typically reply that it is premature to draw firm conclusions 

based upon biological plausibility, given how little we understand about the relation 

between neural, computational, and cognitive levels of description (Gallistel and King 

2009; Marcus 2003). At present, we have accumulated substantial knowledge about 

individual neurons and their interactions in the brain. Yet we still have a tremendous 

amount to learn about how neural tissue accomplishes the tasks that it surely accomplishes: 

perception, reasoning, decision-making, language acquisition, and so on. Given our present 

state of relative ignorance, it would be rash to insist that the brain does not implement 

anything resembling Turing computation. 

Connectionists offer numerous further arguments that we should employ connectionist 

models instead of, or in addition to, classical models. See the entry connectionism for an 

overview. For purposes of this entry, we mention two additional arguments. 

The first argument emphasizes learning (Bechtel and Abramson 2002: 51). A vast range of 

cognitive phenomena involve learning from experience. Many connectionist models are 

explicitly designed to model learning, through backpropagation or some other algorithm 

that modifies the weights between nodes. By contrast, connectionists often complain that 

there are no good classical models of learning. Classical computationalists can answer this 

worry by citing perceived defects of connectionist learning algorithms (e.g., the heavy 

reliance of backpropagation upon supervised training). Classical computationalists can also 

cite the enormous success of Bayesian decision theory, which models learning as 

probabilistic updating. Admittedly, Bayesian updating in the general case is 

computationally intractable. Nevertheless, the advances mentioned in §2 show how 

classical computing systems can approximate idealized Bayesian updating in various 

realistic scenarios. These advances provide hope that classical computation can model 

many important cases of learning. 

The second argument emphasizes speed of computation. Neurons are much slower than 

silicon-based components of digital computers. For this reason, neurons could not execute 

serial computation quickly enough to match rapid human performance in perception, 

linguistic comprehension, decision-making, etc. Connectionists maintain that the only 

viable solution is to replace serial computation with a “massively parallel” computational 

architecture—precisely what neural networks provide (Feldman and Ballard 1982; 

Rumelhart 1989). However, this argument is only effective against classical 

computationalists who insist upon serial processing. As noted in §3, some Turing-style 

http://plato.stanford.edu/entries/connectionism/
http://plato.stanford.edu/entries/computational-mind/#ArtInt
http://plato.stanford.edu/entries/computational-mind/#ClaComTheMin
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models involve parallel processing. Many classical computationalists are happy to allow 

“massively parallel” mental computation, and the argument gains no traction against these 

researchers. That being said, the argument highlights an important question that any 

computationalist—whether classical, connectionist, or otherwise—must address: How 

does a brain built from relatively slow neurons execute sophisticated computations so 

quickly? Neither classical nor connectionist computationalists have answered this question 

satisfactorily (Gallistel and King 2009: 174 and 265). 

4.3 Systematicity and productivity 

Fodor and Pylyshyn (1988) offer a widely discussed critique of eliminativist 

connectionism. They argue that systematicity and productivity fail in connectionist models, 

except when the connectionist model implements a classical model. Hence, connectionism 

does not furnish a viable alternative to CCTM. At best, it supplies a low-level description 

that helps bridge the gap between Turing-style computation and neuroscientific description. 

This argument has elicited numerous replies and counter-replies. Some argue that neural 

networks can exhibit systematicity without implementing anything like classical 

computational architecture (Horgan and Tienson 1996; Chalmers 1990; Smolensky 1991; 

van Gelder 1990). Some argue that Fodor and Pylyshyn vastly exaggerate systematicity 

(Johnson 2004) or productivity (Rumelhart and McClelland 1986), especially for non-

human animals (Dennett 1991). These issues, and many others raised by Fodor and 

Pylyshyn’s argument, have been thoroughly investigated over the past few decades. For 

further discussion, see Bechtel and Abramson (2002: 156–199), Bermúdez (2005: 244–

278), Chalmers (1993), Clark (2014: 84–86), and the encyclopedia entries on the language 

of thought hypothesis and on connectionism. 

Gallistel and King (2009) advance a related but distinct productivity argument. They 

emphasize productivity of mental computation, as opposed to productivity of mental states. 

Through detailed empirical case studies, they argue that many non-human animals can 

extract, store, and retrieve detailed records of the surrounding environment. For example, 

the Western scrub jay records where it cached food, what kind of food it cached in each 

location, when it cached the food, and whether it has depleted a given cache (Clayton, 

Emery, and Dickinson 2006). The jay can access these records and exploit them in diverse 

computations: computing whether a food item stored in some cache is likely to have 

decayed; computing a route from one location to another; and so on. The number of 

possible computations a jay can execute is, for all practical purposes, infinite. 

CCTM explains the productivity of mental computation by positing a central processor that 

stores and retrieves symbols in addressable read/write memory. When needed, the central 

processor can retrieve arbitrary, unpredicted combinations of symbols from memory. In 

contrast, Gallistel and King argue, connectionism has difficulty accommodating the 

productivity of mental computation. Although Gallistel and King do not carefully 

distinguish between eliminativist and implementationist connectionism, we may 

summarize their argument as follows: 

http://plato.stanford.edu/entries/language-thought/
http://plato.stanford.edu/entries/language-thought/
http://plato.stanford.edu/entries/connectionism/
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 Eliminativist connectionism cannot explain how organisms combine stored 

memories (e.g., cache locations) for computational purposes (e.g., computing a 

route from one cache to another). There are a virtual infinity of possible 

combinations that might be useful, with no predicting in advance which pieces of 

information must be combined in future computations. The only computationally 

tractable solution is symbol storage in readily accessible read/write memory 

locations—a solution that eliminativist connectionists reject. 

 Implementationist connectionists can postulate symbol storage in read/write 

memory, as implemented by a neural network. However, the mechanisms that 

connectionists usually propose for implementing memory are not plausible. Existing 

proposals are mainly variants upon a single idea: a recurrent neural network that 

allows reverberating activity to travel around a loop (Elman 1990). There are many 

reasons why the reverberatory loop model is hopeless as a theory of long-term 

memory. For example, noise in the nervous system ensures that signals would 

rapidly degrade in a few minutes. Implementationist connectionists have thus far 

offered no plausible model of read/write memory.[2] 

Gallistel and King conclude that CCTM is much better suited than either eliminativist or 

implementationist connectionism to explain a vast range of cognitive phenomena. 

Critics attack this new productivity argument from various angles, focusing mainly on the 

empirical case studies adduced by Gallistel and King. Peter Dayan (2009), John Donahoe 

(2010), and Christopher Mole (2014) argue that biologically plausible neural network 

models can accommodate at least some of the case studies. Dayan and Donahoe argue that 

empirically adequate neural network models can dispense with anything resembling 

read/write memory. Mole argues that, in certain cases, empirically adequate neural network 

models can implement the read/write memory mechanisms posited by Gallistel and King. 

Debate on these fundamental issues seems poised to continue well into the future. 

4.4 Computational neuroscience 

Computational neuroscience describes the nervous system through computational models. 

Although this research program is grounded in mathematical modeling of individual 

neurons, the distinctive focus of computational neuroscience is systems of interconnected 

neurons. Computational neuroscience usually models these systems as neural networks. In 

that sense, it is a variant, off-shoot, or descendant of connectionism. However, most 

computational neuroscientists do not self-identify as connectionists. There are several 

differences between connectionism and computational neuroscience: 

 Neural networks employed by computational neuroscientists are much more 

biologically realistic than those employed by connectionists. The computational 

neuroscience literature is filled with talk about firing rates, action potentials, tuning 

curves, etc. These notions play at best a limited role in connectionist research, such 

as most of the research canvassed in (Rogers and McClelland 2014). 

 Computational neuroscience is driven in large measure by knowledge about the 

brain, and it assigns huge importance to neurophysiological data (e.g., cell 

http://plato.stanford.edu/entries/computational-mind/notes.html#note-2
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recordings). Connectionists place much less emphasis upon such data. Their 

research is primarily driven by behavioral data (although more recent connectionist 

writings cite neurophysiological data with somewhat greater frequency). 

 Computational neuroscientists usually regard individual nodes in neural networks 

as idealized descriptions of actual neurons. Connectionists usually instead regard 

nodes as neuron-like processing units (Rogers and McClelland 2014) while 

remaining neutral about how exactly these units map onto actual neurophysiological 

entities. 

One might say that computational neuroscience is concerned mainly with neural 

computation (computation by systems of neurons), whereas connectionism is concerned 

mainly with abstract computational models inspired by neural computation. But the 

boundaries between connectionism and computational neuroscience are admittedly 

somewhat porous. For an overview of computational neuroscience, see Trappenberg 

(2010). 

Serious philosophical engagement with neuroscience dates back at least to Patricia 

Churchland’s Neurophilosophy (1986). As computational neuroscience matured, 

Churchland became one of its main philosophical champions (Churchland, Koch, and 

Sejnowski 1990; Churchland and Sejnowski 1992). She was joined by Paul Churchland 

(1995, 2007) and others (Eliasmith 2013; Eliasmith and Anderson 2003; Piccinini and 

Bahar 2013; Piccinini and Shagrir 2014). All these authors hold that theorizing about 

mental computation should begin with the brain, not with Turing machines or other 

inappropriate tools drawn from logic and computer science. They also hold that neural 

network modeling should strive for greater biological realism than connectionist models 

typically attain. Chris Eliasmith (2013) develops this neurocomputational viewpoint 

through the Neural Engineering Framework, which supplements computational 

neuroscience with tools drawn from control theory (Brogan 1990). He aims to “reverse 

engineer” the brain, building large-scale, biologically plausible neural network models of 

cognitive phenomena. 

Computational neuroscience differs in a crucial respect from CCTM and connectionism: it 

abandons multiply realizability. Computational neuroscientists cite specific 

neurophysiological properties and processes, so their models do not apply equally well to 

(say) a sufficiently different silicon-based creature. Thus, computational neuroscience 

sacrifices a key feature that originally attracted philosophers to CTM. Computational 

neuroscientists will respond that this sacrifice is worth the resultant insight into 

neurophysiological underpinnings. But many computationalists worry that, by focusing too 

much on neural underpinnings, we risk losing sight of the cognitive forest for the neuronal 

trees. Neurophysiological details are important, but don’t we also need an additional 

abstract level of computational description that prescinds from such details? Gallistel and 

King (2009) argue that a myopic fixation upon what we currently know about the brain has 

led computational neuroscience to shortchange core cognitive phenomena such as 

navigation, spatial and temporal learning, and so on. Similarly, Edelman (2014) complains 
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that the Neural Engineering Framework substitutes a blizzard of neurophysiological details 

for satisfying psychological explanations. 

Despite the differences between connectionism and computational neuroscience, these two 

movements raise many similar issues. In particular, the dialectic from §4.4 regarding 

systematicity and productivity arises in similar form. 

5. Computation and representation 
Philosophers and cognitive scientists use the term “representation” in diverse ways. Within 

philosophy, the most dominant usage ties representation to intentionality, i.e., the 

“aboutness” of mental states. Contemporary philosophers usually elucidate intentionality 

by invokingrepresentational content. A representational mental state has a content that 

represents the world as being a certain way, so we can ask whether the world is indeed that 

way. Thus, representationally contentful mental states are semantically evaluable with 

respect to properties such as truth, accuracy, fulfillment, and so on. To illustrate: 

 Beliefs are the sorts of things that can be true or false. My belief that Barack Obama 

is president is true if Barack Obama is president, false if he is not. 

 Perceptual states are the sorts of things that can be accurate or inaccurate. My 

perceptual experience as of a red sphere is accurate only if a red sphere is before 

me. 

 Desires are the sorts of things that can fulfilled or thwarted. My desire to eat 

chocolate is fulfilled if I eat chocolate, thwarted if I do not eat chocolate. 

Beliefs have truth-conditions (conditions under which they are true), perceptual states have 

accuracy-conditions (conditions under which they are accurate), and desires have 

fulfillment-conditions (conditions under which they are fulfilled). 

In ordinary life, we frequently predict and explain behavior by invoking beliefs, desires, 

and other representationally contentful mental states. We identify these states through their 

representational properties. When we say “Frank believes that Barack Obama is president”, 

we specify the condition under which Frank’s belief is true (namely, that Barack Obama is 

president). When we say “Frank wants to eat chocolate”, we specify the condition under 

which Frank’s desire is fulfilled (namely, that Frank eats chocolate). So folk psychology 

assigns a central role to intentional descriptions, i.e., descriptions that identify mental states 

through their representational properties. Whether scientific psychology should likewise 

employ intentional descriptions is a contested issue within contemporary philosophy of 

mind. 

Intentional realism is realism regarding representation. At a minimum, this position holds 

that representational properties are genuine aspects of mentality. Usually, it is also taken to 

hold that scientific psychology should freely employ intentional descriptions when 

appropriate. Intentional realism is a popular position, advocated by Tyler Burge (2010a), 

Jerry Fodor (1987), Christopher Peacocke (1992, 1994), and many others. One prominent 

argument for intentional realism citescognitive science practice. The argument maintains 

http://plato.stanford.edu/entries/computational-mind/#ComNeu
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that intentional description figures centrally in many core areas of cognitive science, such 

as perceptual psychology and linguistics. For example, perceptual psychology describes 

how perceptual activity transforms sensory inputs (e.g., retinal stimulations) into 

representations of the distal environment (e.g., perceptual representations of distal shapes, 

sizes, and colors). The science identifies perceptual states by citing representational 

properties (e.g., representational relations to specific distal shapes, sizes, colors). Assuming 

a broadly scientific realist perspective, the explanatory achievements of perceptual 

psychology support a realist posture towards intentionality. 

Eliminativism is a strong form of anti-realism about intentionality. Eliminativists dismiss 

intentional description as vague, context-sensitive, interest-relative, explanatorily 

superficial, or otherwise problematic. They recommend that scientific psychology jettison 

representational content. An early example is W.V. Quine’s Word and Object (1960), 

which seeks to replace intentional psychology with behaviorist stimulus-response 

psychology. Paul Churchland (1981), another prominent eliminativist, wants to replace 

intentional psychology with neuroscience. 

Between intentional realism and eliminativism lie various intermediate positions. Daniel 

Dennett (1971, 1987) acknowledges that intentional discourse is predictively useful, but he 

questions whether mental states really have representational properties. According to 

Dennett, theorists who employ intentional descriptions are not literally asserting that 

mental states have representational properties. They are merely adopting the “intentional 

stance”. Donald Davidson (1980) espouses a neighboring interpretivist position. He 

emphasizes the central role that intentional ascription plays within ordinary interpretive 

practice, i.e., our practice of interpreting one another’s mental states and speech acts. At 

the same time, he questions whether intentional psychology will find a place within mature 

scientific theorizing. Davidson and Dennett both profess realism about intentional mental 

states. Nevertheless, both philosophers are customarily read as intentional anti-realists. (In 

particular, Dennett is frequently read as a kind of instrumentalist about intentionality.) One 

source of this customary reading involves indeterminacy of interpretation. Suppose that 

behavioral evidence allows two conflicting interpretations of a thinker’s mental states. 

Following Quine, Davidson and Dennett both say there is then “no fact of the matter” 

regarding which interpretation is correct. This diagnosis indicates a less than fully realist 

attitude towards intentionality. 

Debates over intentionality figure prominently in philosophical discussion of CTM. Let us 

survey some highlights. 

5.1 Computation as formal 

Classical computationalists typically assume what one might call the formal-syntactic 

conception of computation (FSC). The intuitive idea is that computation manipulates 

symbols in virtue of their formal syntactic properties rather than their semantic properties. 

FSC stems from innovations in mathematical logic during the late 19th and early 

20th centuries, especially seminal contributions by George Boole and Gottlob Frege. In 
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his Begriffsschrift(1879/1967), Frege effected a thoroughgoing formalization of deductive 

reasoning. To formalize, we specify a formal language whose component linguistic 

expressions are individuated non-semantically (e.g., by their geometric shapes). We may 

have some intended interpretation in mind, but elements of the formal language are purely 

syntactic entities that we can discuss without invoking semantic properties such as 

reference or truth-conditions. In particular, we can specifyinference rules in formal 

syntactic terms. If we choose our inference rules wisely, then they will cohere with our 

intended interpretation: they will carry true premises to true conclusions. Through 

formalization, Frege invested logic with unprecedented rigor. He thereby laid the 

groundwork for numerous subsequent mathematical and philosophical developments. 

Formalization plays a significant foundational role within computer science. We can 

program a Turing-style computer that manipulates linguistic expressions drawn from a 

formal language. If we program the computer wisely, then its syntactic machinations will 

cohere with our intended semantic interpretation. For example, we can program the 

computer so that it carries true premises only to true conclusions, or so that it updates 

probabilities as dictated by Bayesian decision theory. 

FSC holds that all computation manipulates formal syntactic items, without regard to any 

semantic properties those items may have. Precise formulations of FSC vary. Computation 

is said to be “sensitive” to syntax but not semantics, or to have “access” only to syntactic 

properties, or to operate “in virtue” of syntactic rather than semantic properties, or to be 

impacted by semantic properties only as “mediated” by syntactic properties. It is not always 

so clear what these formulations mean or whether they are equivalent to one another. But 

the intuitive picture is that syntactic properties have causal/explanatory primacy over 

semantic properties in driving computation forward. 

Fodor’s article “Methodological Solipsism Considered as a Research Strategy in Cognitive 

Psychology” (1980) offers an early statement. Fodor combines FSC with CCTM+RTM. 

He analogizes Mentalese to formal languages studied by logicians: it contains simple and 

complex items individuated non-semantically, just as typical formal languages contain 

simple and complex expressions individuated by their shapes. Mentalese symbols have a 

semantic interpretation, but this interpretation does not (directly) impact mental 

computation. A symbol’s formal properties, rather than its semantic properties, determine 

how computation manipulates the symbol. In that sense, the mind is a “syntactic engine”. 

Virtually all classical computationalists follow Fodor in endorsing FSC. 

Connectionists often deny that neural networks manipulate syntactically structured items. 

For that reason, many connectionists would hesitate to accept FSC. Nevertheless, most 

connectionists endorse a generalized formality thesis: computation is insensitive to 

semantic properties. The generalized formality thesis raises many of the same philosophical 

issues raised by FSC. We focus here on FSC, which has received the most philosophical 

discussion. 

Fodor combines CCTM+RTM+FSC with intentional realism. He holds that 

CCTM+RTM+FSC vindicates folk psychology by helping us convert common sense 
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intentional discourse into rigorous science. He motivates his position with a famous 

abductive argument for CCTM+RTM+FSC (1987: 18–20). Strikingly, mental activity 

tracks semantic properties in a coherent way. For example, deductive inference carries 

premises to conclusions that are true if the premises are true. How can we explain this 

crucial aspect of mental activity? Formalization shows that syntactic manipulations can 

track semantic properties, and computer science shows how to build physical machines that 

execute desired syntactic manipulations. If we treat the mind as a syntax-driven machine, 

then we can explain why mental activity tracks semantic properties in a coherent way. 

Moreover, our explanation does not posit causal mechanisms radically different from those 

posited within the physical sciences. We thereby answer the pivotal question: How is 

rationality mechanically possible? 

Stephen Stich (1983) and Hartry Field (2001) combine CCTM+FSC with eliminativism. 

They recommend that cognitive science model the mind in formal syntactic terms, 

eschewing intentionality altogether. They grant that mental states have representational 

properties, but they ask what explanatory value scientific psychology gains by invoking 

those properties. Why supplement formal syntactic description with intentional 

description? If the mind is a syntax-driven machine, then doesn’t representational content 

drop out as explanatorily irrelevant? 

At one point in his career, Putnam (1983: 139–154) combined CCTM+FSC with a 

Davidson-tingedinterpretivism. Cognitive science should proceed along the lines suggested 

by Stich and Field, delineating purely formal syntactic computational models. Formal 

syntactic modeling co-exists with ordinary interpretive practice, in which we ascribe 

intentional contents to one another’s mental states and speech acts. Interpretive practice is 

governed by holistic and heuristic constraints, which stymie attempts at converting 

intentional discourse into rigorous science. For Putnam, as for Field and Stich, the scientific 

action occurs at the formal syntactic level rather than the intentional level. 

CTM+FSC comes under attack from various directions. One criticism targets the causal 

relevance of representational content (Block 1990; Figdor 2009; Kazez 1995). Intuitively 

speaking, the contents of mental states are causally relevant to mental activity and behavior. 

For example, my desire to drink water rather than orange juice causes me to walk to the 

sink rather than the refrigerator. The content of my desire (that I drink water) seems to play 

an important causal role in shaping my behavior. According to Fodor (1990: 137–159), 

CCTM+RTM+FSC accommodates such intuitions. Formal syntactic 

activity implements intentional mental activity, thereby ensuring that intentional mental 

states causally interact in accord with their contents. However, it is not so clear that this 

analysis secures the causal relevance of content. FSC says that computation is “sensitive” 

to syntax but not semantics. Depending on how one glosses the key term “sensitive”, it can 

look like representational content is causally irrelevant, with formal syntax doing all the 

causal work. Here is an analogy to illustrate the worry. When a car drives along a road, 

there are stable patterns involving the car’s shadow. Nevertheless, shadow position at one 

time does not influence shadow position at a later time. Similarly, CCTM+RTM+FSC may 

explain how mental activity instantiates stable patterns described in intentional terms, but 
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this is not enough to ensure the causal relevance of content. If the mind is a syntax-driven 

machine, then causal efficacy seems to reside at the syntactic rather the semantic level. 

Semantics is just “along for the ride”. Apparently, then, CTM+FSC encourages the 

conclusion that representational properties are causally inert. The conclusion may not 

trouble eliminativists, but intentional realists usually want to avoid it. 

A second criticism dismisses the formal-syntactic picture as speculation ungrounded in 

scientific practice. Tyler Burge (2010a,b, 2013: 479–480) contends that formal syntactic 

description of mental activity plays no significant role within large areas of cognitive 

science, including the study of theoretical reasoning, practical reasoning, and perception. 

In each case, Burge argues, the science employs intentional description rather than formal 

syntactic description. For example, perceptual psychology individuates perceptual states 

not through formal syntactic properties but through representational relations to distal 

shapes, sizes, colors, and so on. To understand this criticism, we must distinguish formal 

syntactic description and neurophysiological description. Everyone agrees that a complete 

scientific psychology will assign prime importance to neurophysiological description. 

However, neurophysiological description is distinct from formal syntactic description, 

because formal syntactic description is supposed to be multiply realizable in the 

neurophysiological. The issue here is whether scientific psychology should 

supplement intentional descriptions andneurophysiological descriptions with multiply 

realizable, non-intentional formal syntacticdescriptions. 

5.2 Externalism about mental content 

Putnam’s landmark article “The Meaning of ‘Meaning’” (1975: 215–271) introduced 

the Twin Earth thought experiment, which postulates a world just like our own except that 

H2O is replaced by a qualitatively similar substance XYZ with different chemical 

composition. Putnam argues that XYZ is not water and that speakers on Twin Earth use the 

word “water” to refer to XYZ rather than to water. Burge (1982) extends this conclusion 

from linguistic reference to mental content. He argues that Twin Earthlings instantiate 

mental states with different contents. For example, if Oscar on Earth thinks that water is 

thirst-quenching, then his duplicate on Twin Earth thinks a thought with a different content, 

which we might gloss as that twater is thirst-quenching. Burge concludes that mental 

content does not supervene upon internal neurophysiology. Mental content is individuated 

partly by factors outside the thinker’s skin, including causal relations to the environment. 

This position is externalism about mental content. 

Formal syntactic properties of mental states are widely taken to supervene upon internal 

neurophysiology. For example, Oscar and Twin Oscar instantiate the same formal syntactic 

manipulations. Assuming content externalism, it follows that there is a huge gulf between 

ordinary intentional description and formal syntactic description. 

Content externalism raises serious questions about the explanatory utility of 

representational content for scientific psychology: 



23 
 

Argument from Causation (Fodor 1987, 1991): How can mental content exert any causal 

influence except as manifested within internal neurophysiology? There is no 

“psychological action at a distance”. Differences in the physical environment impact 

behavior only by inducing differences in local brain states. So the only causally relevant 

factors are those that supervene upon internal neurophysiology. Externally individuated 

content is causally irrelevant. 

Argument from Explanation (Stich 1983): Rigorous scientific explanation should not take 

into account factors outside the subject’s skin. Folk psychology may taxonomize mental 

states through relations to the external environment, but scientific psychology should 

taxonomize mental states entirely through factors that supervene upon internal 

neurophysiology. It should treat Oscar and Twin Oscar as psychological duplicates.[3] 

Some authors pursue the two arguments in conjunction with one another. Both arguments 

reach the same conclusion: externally individuated mental content finds no legitimate place 

within causal explanations provided by scientific psychology. Stich (1983) argues along 

these lines to motivate his formal-syntactic eliminativism. 

Many philosophers respond to such worries by promoting content internalism. Whereas 

content externalists favor wide content (content that does not supervene upon internal 

neurophysiology), content internalists favor narrow content (content that does so 

supervene). Narrow content is what remains of mental content when one factors out all 

external elements. At one point in his career, Fodor (1981, 1987) pursued internalism as a 

strategy for integrating intentional psychology with CCTM+RTM+FSC. While conceding 

that wide content should not figure in scientific psychology, he maintained that narrow 

content should play a central explanatory role. 

Radical internalists insist that all content is narrow. A typical analysis holds that Oscar is 

thinking not about water but about some more general category of substance that subsumes 

XYZ, so that Oscar and Twin Oscar entertain mental states with the same contents. Tim 

Crane (1991) and Gabriel Segal (2000) endorse such an analysis. They hold that folk 

psychology always individuates propositional attitudes narrowly. A less radical internalism 

recommends that we recognize narrow content in addition to wide content. Folk 

psychology may sometimes individuate propositional attitudes widely, but we can also 

delineate a viable notion of narrow content that advances important philosophical or 

scientific goals. Internalists have proposed various candidate notions of narrow content 

(Block 1986; Chalmers 2002; Cummins 1989; Fodor 1987; Lewis 1994; Loar 1988; 

Mendola 2008). See the entry narrow mental content for an overview of prominent 

candidates. 

Externalists complain that existing theories of narrow content are sketchy, implausible, 

useless for psychological explanation, or otherwise objectionable (Burge 2007; Sawyer 

2000; Stalnaker 1999). Externalists also question internalist arguments that scientific 

psychology requires narrow content: 

Argument from Causation: Externalists insist that wide content can be causally relevant. 

The details vary among externalists, and discussion often becomes intertwined with 

http://plato.stanford.edu/entries/computational-mind/notes.html#note-3
http://plato.stanford.edu/entries/content-narrow/
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complex issues surrounding causation, counterfactuals, and the metaphysics of mind. See 

the entry mental causationfor an introductory overview, and see Burge (2007), Rescorla 

(2014a), and Yablo (1997, 2003) for representative externalist discussion. 

Argument from Explanation: Externalists claim that psychological explanation can 

legitimately taxonomize mental states through factors that outstrip internal 

neurophysiology (Peacocke 1993). Burge observes that non-psychological sciences often 

individuate explanatory kinds relationally, i.e., through relations to external factors. For 

example, whether an entity counts as a heart depends (roughly) upon whether its biological 

function in its normal environment is to pump blood. So physiology individuates organ 

kinds relationally. Why can’t psychology likewise individuate mental states relationally? 

For a notable exchange on these issues, see Burge (1986, 1989, 1995) and Fodor (1987, 

1991). 

Externalists doubt that we have any good reason to replace or supplement wide content 

with narrow content. They dismiss the search for narrow content as a wild goose chase. 

Burge (2007, 2010a) defends externalism by analyzing current cognitive science. He argues 

that many branches of scientific psychology (especially perceptual psychology) individuate 

mental content through causal relations to the external environment. He concludes that 

scientific practice embodies an externalist perspective. By contrast, he maintains, narrow 

content is a philosophical fantasy ungrounded in current science. 

Suppose we abandon the search for narrow content. What are the prospects for combining 

CTM+FSC with externalist intentional psychology? The most promising option 

emphasizes levels of explanation. We can say that intentional psychology occupies one 

level of explanation, while formal-syntactic computational psychology occupies a different 

level. Fodor advocates this approach in his later work (1994, 2008). He comes to reject 

narrow content as otiose. He suggests that formal syntactic mechanisms implement 

externalist psychological laws. Mental computation manipulates Mentalese expressions in 

accord with their formal syntactic properties, and these formal syntactic manipulations 

ensure that mental activity instantiates appropriate law-like patterns defined over wide 

contents. 

In light of the internalism/externalism distinction, let us revisit the eliminativist challenge 

raised in§5.1: what explanatory value does intentional description add to formal-syntactic 

description? Internalists can respond that suitable formal syntactic manipulations determine 

and maybe even constitute narrow contents, so that internalist intentional description is 

already implicit in suitable formal syntactic description (cf. Field 2001: 75). Perhaps this 

response vindicates intentional realism, perhaps not. Crucially, though, no such response is 

available to content externalists. Externalist intentional description is not implicit in formal 

syntactic description, because one can hold formal syntax fixed while varying wide content. 

Thus, content externalists who espouse CTM+FSC must say what we gain by 

supplementing formal-syntactic explanations with intentional explanations. Once we 

accept that mental computation is sensitive to syntax but not semantics, it is far from clear 

that any useful explanatory work remains for wide content. Fodor addresses this challenge 

http://plato.stanford.edu/entries/mental-causation/
http://plato.stanford.edu/entries/computational-mind/#ComFor
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at various points, offering his most systematic treatment in The Elm and the Expert(1994). 

See Arjo (1996), Aydede (1998), Aydede and Robbins (2001), Wakefield (2002); Perry 

(1998), and Wakefield (2002) for criticism. See Rupert (2008) and Schneider (2005) for 

positions close to Fodor’s. See also Dretske (1993), which pursues an alternative strategy 

for vindicating the explanatory relevance of wide content. 

5.3 Content-involving computation 

The perceived gulf between computational description and intentional description animates 

many writings on CTM. A few philosophers try to bridge the gulf using computational 

descriptions that individuate computational states in representational terms. These 

descriptions are content-involving, to use Christopher Peacocke’s (1994) terminology. On 

the content-involving approach, there is no rigid demarcation between computational and 

intentional description. In particular, certain scientifically valuable descriptions of mental 

activity are both computational and intentional. Call this position content-involving 

computationalism. 

Content-involving computationalists need not say that all computational description is 

intentional. To illustrate, suppose we describe a simple Turing machine that manipulates 

symbols individuated by their geometric shapes. Then the resulting computational 

description is not plausibly content-involving. Accordingly, content-involving 

computationalists do not usually advance content-involving computation as a general 

theory of computation. They claim only that some important computational descriptions 

are content-involving. 

One can develop content-involving computationalism in an internalist or externalist 

direction.Internalist content-involving computationalists hold that some computational 

descriptions identify mental states partly through their narrow contents. Murat Aydede 

(2005) recommends a position along these lines. Externalist content-involving 

computationalism holds that certain computational descriptions identify mental states 

partly through their wide contents. Tyler Burge (2010a: 95–101), Christopher Peacocke 

(1994, 1999), Michael Rescorla (2012), and Mark Sprevak (2010) espouse this position. 

Oron Shagrir (2001) advocates a content-involving computationalism that is neutral 

between internalism and externalism. 

Externalist content-involving computationalists typically cite cognitive science practice as 

a motivating factor. For example, perceptual psychology describes the perceptual system 

as computing an estimate of some object’s size from retinal stimulations and from an 

estimate of the object’s depth. Perceptual “estimates” are identified representationally, as 

representations of specific distal sizes and depths. Quite plausibly, representational 

relations to specific distal sizes and depths do not supervene on internal neurophysiology. 

Quite plausibly, then, perceptual psychology type-identifies perceptual computations 

through wide contents. So externalist content-involving computationalism seems to 

harmonize well with current cognitive science. 
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A major challenge facing content-involving computationalism concerns the interface with 

standard computationalism formalisms, such as the Turing machine. How exactly do 

content-involving descriptions relate to the computational models found in logic and 

computer science? Philosophers usually assume that these models offer non-intentional 

descriptions. If so, that would be a major and perhaps decisive blow to content-involving 

computationalism. 

Arguably, though, many familiar computational formalisms allow a content-involving 

rather than formal syntactic construal. To illustrate, consider the Turing machine. 

One can individuate the “symbols” comprising the Turing machine alphabet non-

semantically, through factors akin to geometric shape. But does Turing’s 

formalism require a non-semantic individuative scheme? Arguably, the formalism allows 

us to individuate symbols partly through their contents. Of course, the machine table for a 

Turing machine does not explicitly cite semantic properties of symbols (e.g., denotations 

or truth-conditions). Nevertheless, the machine table can encode mechanical rules that 

describe how to manipulate symbols, where those symbols are type-identified in content-

involving terms. In this way, the machine table dictates transitions among content-

involving states without explicitly mentioning semantic properties. Aydede (2005) suggests 

an internalist version of this view, with symbols type-identified through their narrow 

contents.[4] Rescorla (forthcoming) develops the view in an externalist direction, with 

symbols type-identified through their wide contents. He argues that some Turing-style 

models describe computational operations over externalistically individuated Mentalese 

symbols.[5] 

In principle, one might embrace both externalist content-involving computational 

description andformal syntactic description. One might say that these two kinds of 

description occupy distinct levels of explanation. Peacocke suggests such a view. Other 

content-involving computationalists regard formal syntactic descriptions of the mind more 

skeptically. For example, Burge questions what explanatory value formal syntactic 

description contributes to certain areas of scientific psychology (such as perceptual 

psychology). From this viewpoint, the eliminativist challenge posed in §5.1 has matters 

backwards. We should not assume that formal syntactic descriptions are explanatorily 

valuable and then ask what value intentional descriptions contribute. We should instead 

embrace the externalist intentional descriptions offered by current cognitive science and 

then ask what value formal syntactic description contributes. 

Proponents of formal syntactic description respond by citing implementation mechanisms. 

Externalist description of mental activity presupposes that suitable causal-historical 

relations between the mind and the external physical environment are in place. But surely 

we want a “local” description that ignores external causal-historical relations, a description 

that reveals underlying causal mechanisms. Fodor (1987, 1994) argues in this way to 

motivate the formal syntactic picture. For possible externalist responses to the argument 

from implementation mechanisms, see Burge (2010b), Shea (2013), and Sprevak (2010). 

Debate over this argument, and more generally over the relation between computation and 

representation, seems likely to continue into the indefinite future. 

http://plato.stanford.edu/entries/computational-mind/notes.html#note-4
http://plato.stanford.edu/entries/computational-mind/notes.html#note-5
http://plato.stanford.edu/entries/computational-mind/#ComFor
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6. Alternative conceptions of computation 
The literature offers several alternative conceptions, usually advanced as foundations for 

CTM. In many cases, these conceptions overlap with one another or with the conceptions 

considered above. 

6.1 Information-processing 

It is common for cognitive scientists to describe computation as “information-processing”. 

It is less common for proponents to clarify what they mean by “information” or 

“processing”. Lacking clarification, the description is little more than an empty slogan. 

Claude Shannon introduced a scientifically important notion of “information” in his 1948 

article “A Mathematical Theory of Communication”. The intuitive idea is that information 

measures reduction in uncertainty, where reduced uncertainty manifests as an altered 

probability distribution over possible states. Shannon codified this idea within a rigorous 

mathematical framework, laying the foundation for information theory (Cover and Thomas 

2006). Shannon information is fundamental to modern engineering. It finds fruitful 

application within cognitive science, especially cognitive neuroscience. Does it support a 

convincing analysis of computation as “information-processing”? Consider an old-

fashioned tape machine that records messages received over a wireless radio. Using 

Shannon’s framework, one can measure how much information is carried by some recorded 

message. There is a sense in which the tape machine “processes” Shannon information 

whenever we replay a recorded message. Still, the machine does not seem to implement a 

non-trivial computational model.[6] Certainly, neither the Turing machine formalism nor the 

neural network formalism offers much insight into the machine’s operations. Arguably, 

then, a system can process Shannon information without executing computations in any 

interesting sense. 

Confronted with such examples, one might try to isolate a more demanding notion of 

“processing”, so that the tape machine does not “process” Shannon information. 

Alternatively, one might insist that the tape machine executes non-trivial computations. 

Piccinini and Scarantino (2010) advance a highly general notion of computation—which 

they dub generic computation—with that consequence. 

A second prominent notion of information derives from Paul Grice’s (1989) influential 

discussion of natural meaning. Natural meaning involves reliable, counterfactual-

supporting correlations. For example, tree rings correlate with the age of the tree, and pox 

correlate with chickenpox. We colloquially describe tree rings as carrying information 

about tree age, pox as carrying information about chickenpox, and so on. Such descriptions 

suggest a conception that ties information to reliable, counterfactual-supporting 

correlations. Fred Dretske (1981) develops this conception into a systematic theory, as do 

various subsequent philosophers. Does Dretske-style information subserve a plausible 

analysis of computation as “information-processing”? Consider an old-fashionedbimetallic 

strip thermostat. Two metals are joined together into a strip. Differential expansion of the 

metals causes the strip to bend, thereby activating or deactivating a heating unit. Strip state 

http://plato.stanford.edu/entries/computational-mind/notes.html#note-6
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reliably correlates with current ambient temperature, and the thermostat “processes” this 

information-bearing state when activating or deactivating the heater. Yet the thermostat 

does not seem to implement any non-trivial computational model. One would not ordinarily 

regard the thermostat as computing. Arguably, then, a system can process Dretske-style 

information without executing computations in any interesting sense. Of course, one might 

try to handle such examples through maneuvers parallel to those from the previous 

paragraph. 

A third prominent notion of information is semantic information, i.e., representational 

content.[7]Some philosophers hold that a physical system computes only if the system’s 

states have representational properties (Dietrich 1989; Fodor 1998: 10; Ladyman 2009; 

Shagrir 2006; Sprevak 2010). In that sense, information-processing is necessary for 

computation. As Fodor memorably puts it, “no computation without representation” (1975: 

34). However, this position is debatable. Chalmers (2011) and Piccinini (2008a) contend 

that a Turing machine might execute computations even though symbols manipulated by 

the machine have no semantic interpretation. The machine’s computations are purely 

syntactic in nature, lacking anything like semantic properties. On this view, 

representational content is not necessary for a physical system to count as computational. 

It remains unclear whether the slogan “computation is information-processing” provides 

much insight. Nevertheless, the slogan seems unlikely to disappear from the literature 

anytime soon. For further discussion of possible connections between computation and 

information, see Gallistel and King (2009: 1–26), Lizier, Flecker, and Williams (2013), 

Milkowski (2013), and Piccinini and Scarantino (2010). 

6.2 Function evaluation 

In a widely cited passage, the perceptual psychologist David Marr (1982) distinguishes 

three levels at which one can describe an “information-processing device”: 

Computational theory: “[t]he device is characterized as a mapping from one kind of 

information to another, the abstract properties of this mapping are defined precisely, and 

its appropriateness and adequacy for the task as hand are demonstrated” (p. 24). 

Representation and algorithm: “the choice of representation for the input and output and 

the algorithm to be used to transform one into the other” (pp. 24–25). 

Hardware implementation: “the details of how the algorithm and representation are 

realized physically” (p. 25). 

Marr’s three levels have attracted intense philosophical scrutiny. For our purposes, the key 

point is that Marr’s “computational level” describes a mapping from inputs to outputs, 

without describing intermediate steps. Marr illustrates his approach by providing 

“computational level” theories of various perceptual processes, such as edge detection. 

Marr’s discussion suggests a functional conception of computation, on which computation 

is a matter of transforming inputs into appropriate outputs. Frances Egan elaborates the 

functional conception over a series of articles (1991, 1992, 1999, 2003, 2010, 2014). Like 

http://plato.stanford.edu/entries/computational-mind/notes.html#note-7


29 
 

Marr, she treats computational description as description of input-output relations. She also 

claims that computational models characterize a purely mathematical function: that is, a 

mapping from mathematical inputs to mathematical outputs. She illustrates by considering 

a visual mechanism (called “Visua”) that computes an object’s depth from retinal disparity. 

She imagines a neurophysiological duplicate (“Twin Visua”) embedded so differently in 

the physical environment that it does not represent depth. Visua and Twin Visua instantiate 

perceptual states with different representational properties. Nevertheless, Egan says, vision 

science treats Visua and Twin Visua ascomputational duplicates. Visua and Twin Visua 

compute the same mathematical function, even though the computations have different 

representational import in the two cases. Egan concludes that computational modeling of 

the mind yields an “abstract mathematical description” consistent with many alternative 

possible representational descriptions. Intentional attribution is just a heuristic gloss upon 

underlying computational description. 

Chalmers (2012) argues that the functional conception neglects important features of 

computation. As he notes, computational models usually describe more than just input-

output relations. They describe intermediate steps through which inputs are transformed 

into outputs. These intermediate steps, which Marr consigns to the “algorithmic” level, 

figure prominently in computational models offered by logicians and computer scientists. 

Restricting the term “computation” to input-output description does not capture standard 

computational practice. 

An additional worry faces functional theories, such as Egan’s, that exclusively 

emphasizemathematical inputs and outputs. Critics complain that Egan mistakenly elevates 

mathematical functions, at the expense of intentional explanations routinely offered by 

cognitive science (Burge 2005; Rescorla 2015; Silverberg 2006; Sprevak 2010). To 

illustrate, suppose perceptual psychology describes the perceptual system as estimating that 

some object’s depth is 5 meters. The perceptual depth-estimate has a representational 

content: it is accurate only if the object’s depth is 5 meters. We cite the number 5 to identify 

the depth-estimate. But our choice of this number depends upon our arbitrary choice of 

measurement units. Critics contend that the content of the depth-estimate, not the arbitrarily 

chosen number through which we theorists specify that content, is what matters for 

psychological explanation. Egan’s theory places the number rather than the content at 

explanatory center stage. According to Egan, computational explanation should describe 

the visual system as computing a particular mathematical function that carries particular 

mathematical inputsinto particular mathematical outputs. Those particular mathematical 

inputs and outputs depend upon our arbitrary choice of measurement units, so they arguably 

lack the explanatory significance that Egan assigns to them. 

We should distinguish the functional approach, as pursued by Marr and Egan, from 

the functional programming paradigm in computer science. The functional programming 

paradigm models evaluation of a complex function as successive evaluation of simpler 

functions. To take a simple example, one might evaluate f(x,y)=(x2+y) by first evaluating 

the squaring function and then evaluating the addition function. Functional programming 

differs from the “computational level” descriptions emphasized by Marr, because it 
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specifies intermediate computational stages. The functional programming paradigm 

stretches back to Alonzo Church’s (1936) lambda calculus, continuing with programming 

languages such as PCF and LISP. It plays an important role in AI and theoretical computer 

science. Some authors suggest that it offers special insight into mental computation (Klein 

2012; Piantadosi, Tenenbaum, and Goodman 2012). However, many computational 

formalisms do not conform to the functional paradigm: Turing machines; imperative 

programming languages, such as C; logic programming languages, such as Prolog; and so 

on. Even though the functional paradigm describes numerous important computations 

(possibly including mental computations), it does not plausibly capture computation in 

general. 

6.3 Structuralism 

Many philosophical discussions embody a structuralist conception of computation: a 

computational model describes an abstract causal structure, without taking into account 

particular physical states that instantiate the structure. This conception traces back at least 

to Putnam’s original treatment (1967). Chalmers (1995, 1996a, 2011, 2012) develops it in 

detail. He introduces the combinatorial-state automaton (CSA) formalism, which 

subsumes most familiar models of computation (including Turing machines and neural 

networks). A CSA provides an abstract description of a physical system’s causal topology: 

the pattern of causal interaction among the system’s parts, independent of the nature of 

those parts or the causal mechanisms through which they interact. Computational 

description specifies a causal topology. 

Chalmers deploys structuralism to delineate a very general version of CTM. He assumes 

the functionalist view that psychological states are individuated by their roles in a pattern 

of causal organization. Psychological description specifies causal roles, abstracted away 

from physical states that realize those roles. So psychological properties 

are organizationally invariant, in that they supervene upon causal topology. Since 

computational description characterizes a causal topology, satisfying a suitable 

computational description suffices for instantiating appropriate mental properties. It also 

follows that psychological description is a species of computational description, so that 

computational description should play a central role within psychological explanation. 

Thus, structuralist computation provides a solid foundation for cognitive science. Mentality 

is grounded in causal patterns, which are precisely what computational models articulate. 

Structuralism comes packaged with an attractive account of the implementation 

relation between abstract computational models and physical systems. Under what 

conditions does a physical system implement a computational model? Structuralists say 

that a physical system implements a model just in case the model’s causal structure is 

“isomorphic” to the model’s formal structure. A computational model describes a physical 

system by articulating a formal structure that mirrors some relevant causal topology. 

Chalmers elaborates this intuitive idea, providing detailed necessary and sufficient 

conditions for physical realization of CSAs. Few if any alternative conceptions of 

computation can provide so substantive an account of the implementation relation. 
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We may instructively compare structuralist computationalism with some other theories 

discussed above: 

Machine functionalism. Structuralist computationalism embraces the core idea behind 

machine functionalism: mental states are functional states describable through a suitable 

computational formalism. Putnam advances CTM as an empirical hypothesis, and he 

defends functionalism on that basis. In contrast, Chalmers follows David Lewis (1972) by 

grounding functionalism in the conceptual analysis of mentalistic discourse. Whereas 

Putnam defends functionalism by defending computationalism, Chalmers defends 

computationalism by assuming functionalism. 

Classical computationalism, connectionism, and computational neuroscience. Structuralist 

computationalism emphasizes organizationally invariant descriptions, which are multiply 

realizable. In that respect, it diverges from computational neuroscience. Structuralism is 

compatible with both classical and connectionist computationalism, but it differs in spirit 

from those views. Classicists and connectionists present their rival positions as bold, 

substantive hypotheses. Chalmers advances structuralist computationalism as a relatively 

minimalist position unlikely to be disconfirmed. 

Intentional realism and eliminativism. Structuralist computationalism is compatible with 

both positions. CSA description does not explicitly mention semantic properties such as 

reference, truth-conditions, representational content, and so on. Structuralist 

computationalists need not assign representational content any important role within 

scientific psychology. On the other hand, structuralist computationalism does not preclude 

an important role for representational content. 

The formal-syntactic conception of computation. Wide content depends on causal-historical 

relations to the external environment, relations that outstrip causal topology. Thus, CSA 

description leaves wide content underdetermined. Narrow content presumably supervenes 

upon causal topology, but CSA description does not explicitly mention narrow contents. 

Overall, then, structuralist computationalism prioritizes a level of formal, non-semantic 

computational description. In that respect, it resembles FSC. On the other hand, structuralist 

computationalists need not say that computation is “insensitive” to semantic properties, so 

they need not endorse all aspects of FSC. 

Although structuralist computationalism is distinct from CTM+FSC, it raises some similar 

issues. For example, Rescorla (2012) denies that causal topology plays the central 

explanatory role within cognitive science that structuralist computationalism dictates. He 

suggests that externalist intentional description rather than organizationally invariant 

description enjoys explanatory primacy. Coming from a different direction, computational 

neuroscientists will recommend that we forego organizationally invariant descriptions and 

instead employ more neurally specific computational models. In response to such 

objections, Chalmers (2012) argues that organizationally invariant computational 

description yields explanatory benefits that neither intentional description nor 

neurophysiological description replicate: it reveals the underlying mechanisms of cognition 
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(unlike intentional description); and it abstracts away from neural implementation details 

that are irrelevant for many explanatory purposes. 

6.4 Mechanistic theories 

The mechanistic nature of computation is a recurring theme in logic, philosophy, and 

cognitive science. Gualtiero Piccinini (2007, 2012, 2015) and Marcin Milkowski (2013) 

develop this theme into a mechanistic theory of computing systems. A functional 

mechanism is a system of interconnected components, where each component performs 

some function within the overall system. Mechanistic explanation proceeds by 

decomposing the system into parts, describing how the parts are organized into the larger 

system, and isolating the function performed by each part. A computing system is a 

functional mechanism of a particular kind. On Piccinini’s account, a computing system is 

a mechanism whose components are functionally organized to process vehicles in accord 

with rules. Echoing Putnam’s discussion of multiple realizability, Piccinini demands that 

the rules be medium-independent, in that they abstract away from the specific physical 

implementations of the vehicles. Computational explanation decomposes the system into 

parts and describes how each part helps the system process the relevant vehicles. If the 

system processes discretely structured vehicles, then the computation is digital. If the 

system processes continuous vehicles, then the computation is analog. Milkowski’s version 

of the mechanistic approach is similar. He differs from Piccinini by pursuing an 

“information-processing” gloss, so that computational mechanisms operate over 

information-bearing states. Milkowski and Piccinini deploy their respective mechanistic 

theories to defend computationalism. 

Mechanistic computationalists typically individuate computational states non-

semantically. They therefore encounter worries about the explanatory role of 

representational content, similar to worries encountered by FSC and structuralism. In this 

spirit, Shagrir (2014) complains that mechanistic computationalism does not accommodate 

cognitive science explanations that are simultaneously computational and representational. 

The perceived force of this criticism will depend upon one’s sympathy for content-

involving computationalism. 

6.5 Pluralism 

We have surveyed various contrasting and sometimes overlapping conceptions of 

computation: classical computation, connectionist computation, neural computation, 

formal-syntactic computation, content-involving computation, information-processing 

computation, functional computation, structuralist computation, and mechanistic 

computation. Each conception yields a different form of computationalism. Each 

conception has its own strengths and weaknesses. One might adopt a pluralistic stance that 

recognizes distinct legitimate conceptions. Rather than elevate one conception above the 

others, pluralists happily employ whichever conception seems useful in a given explanatory 

context. Edelman (2008) takes a pluralistic line, as does Chalmers (2012) in his most recent 

discussion. 
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The pluralistic line raises some natural questions. Can we provide a general analysis that 

encompasses all or most types of computation? Do all computations share certain 

characteristic marks with one another? Are they perhaps instead united by something like 

family resemblance? Deeper understanding of computation requires us to grapple with 

these questions. 

7. Arguments against computationalism 
CTM has attracted numerous objections. In many cases, the objections apply only to 

specific versions of CTM (such as classical computationalism or connectionist 

computationalism). Here are a few prominent objections. See also the entry the Chinese 

room argument for a widely discussed objection to classical computationalism advanced 

by John Searle (1980). 

7.1 Triviality arguments 

A recurring worry is that CTM is trivial, because we can describe almost any physical 

system as executing computations. Searle (1990) claims that a wall 

implements any computer program, since we can discern some pattern of molecular 

movements in the wall that is isomorphic to the formal structure of the program. Putnam 

(1988: 121–125) defends a less extreme but still very strong triviality thesis along the same 

lines. Triviality arguments play a large role in the philosophical literature. Anti-

computationalists deploy triviality arguments against computationalism, while 

computationalists seek to avoid triviality. 

Computationalists usually rebut triviality arguments by insisting that the arguments 

overlook constraints upon computational implementation, constraints that bar trivializing 

implementations. The constraints may be counterfactual, causal, semantic, or otherwise, 

depending on one’s favored theory of computation. For example, David Chalmers (1995, 

1996a) and B. Jack Copeland (1996) hold that Putnam’s triviality argument ignores 

counterfactual conditionals that a physical system must satisfy in order to implement a 

computational model. Other philosophers say that a physical system must have 

representational properties to implement a computational model (Fodor 1998: 11–12; 

Ladyman 2009; Sprevak 2010) or at least to implement a content-involving computational 

model (Rescorla 2013, 2014b). The details here vary considerably, and computationalists 

debate amongst themselves exactly which types of computation can avoid which triviality 

arguments. But most computationalists agree that we can avoid any devastating triviality 

worries through a sufficiently robust theory of the implementation relation between 

computational models and physical systems. 

Pancomputationalism holds that every physical system implements a computational model. 

This thesis is plausible, since any physical system arguably implements a sufficiently trivial 

computational model (e.g., a one-state finite state automaton). As Chalmers (2011) notes, 

pancomputationalism does not seem worrisome for computationalism. What would be 

worrisome is the much stronger triviality thesis that almost every physical system 

implements almost every computational model. 

http://plato.stanford.edu/entries/chinese-room/
http://plato.stanford.edu/entries/chinese-room/
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For further discussion of triviality arguments and computational implementation, see the 

entry computation in physical systems. 

7.2 Gödel’s incompleteness theorem 

According to some authors, Gödel’s incompleteness theorems show that human 

mathematical capacities outstrip the capacities of any Turing machine (Nagel and Newman 

1958). J.R. Lucas (1961) develops this position into a famous critique of CCTM. Roger 

Penrose pursues the critique in The Emperor’s New Mind (1989) and subsequent writings. 

Various philosophers and logicians have answered the critique, arguing that existing 

formulations suffer from fallacies, question-begging assumptions, and even outright 

mathematical errors (Bowie 1982; Chalmers 1996b; Feferman 1996; Lewis 1969, 1979; 

Putnam 1975: 365–366, 1994; Shapiro 2003). There is a wide consensus that this criticism 

of CCTM lacks any force. It may turn out that certain human mental capacities outstrip 

Turing-computability, but Gödel’s incompleteness theorems provide no reason to 

anticipate that outcome. 

7.3 Limits of computational modeling 

Could a computer compose the Eroica symphony? Or discover general relativity? Or even 

replicate a child’s effortless ability to perceive the environment, tie her shoelaces, and 

discern the emotions of others? Intuitive, creative, or skillful human activity may seem to 

resist formalization by a computer program (Dreyfus 1972, 1992). More generally, one 

might worry that crucial aspects of human cognition elude computational modeling, 

especially classical computational modeling. 

Ironically, Fodor promulgates a forceful version of this critique. Even in his earliest 

statements of CCTM, Fodor (1975: 197–205) expresses considerable skepticism that 

CCTM can handle all important cognitive phenomena. The pessimism becomes more 

pronounced in his later writings (1983, 2000), which focus especially on abductive 

reasoning as a mental phenomenon that potentially eludes computational modeling. His 

core argument may be summarized as follows: 

 (1)Turing-style computation is sensitive only to “local” properties of a mental 

representation, which are exhausted by the identity and arrangement of the 

representation’s constituents. 

 (2)Many mental processes, paradigmatically abduction, are sensitive to “nonlocal” 

properties such as relevance, simplicity, and conservatism. 

 (3)Hence, we may have to abandon Turing-style modeling of the relevant processes. 

 (4)Unfortunately, we have currently have no idea what alternative theory might 

serve as a suitable replacement. 

Some critics deny (1), arguing that suitable Turing-style computations can be sensitive to 

“nonlocal” properties (Schneider 2011; Wilson 2005). Some challenge (2), arguing that 

typical abductive inferences are sensitive only to “local” properties (Carruthers 2003; 

http://plato.stanford.edu/entries/computation-physicalsystems/
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Ludwig and Schneider 2008; Sperber 2002). Some concede step (3) but dispute step (4), 

insisting that we have promising non-Turing-style models of the relevant mental processes 

(Pinker 2005). Partly spurred by such criticisms, Fodor elaborates his argument in 

considerable detail. To defend (2), he critiques theories that model abduction by deploying 

“local” heuristic algorithms (2005: 41–46; 2008: 115–126) or by positing a profusion of 

domain-specific cognitive modules (2005: 56–100). To defend (4), he critiques various 

theories that handle abduction through non-Turing-style models (2000: 46–53; 2008), such 

as connectionist networks. 

The scope and limits of computational modeling remain controversial. We may expect this 

topic to remain an active focus of inquiry, pursued jointly with AI. 

7.4 Temporal arguments 

Mental activity unfolds in time. Moreover, the mind accomplishes sophisticated tasks (e.g., 

perceptual estimation) very quickly. Many critics worry that computationalism, especially 

classical computationalism, does not adequately accommodate temporal aspects of 

cognition. A Turing-style model makes no explicit mention of the time scale over which 

computation occurs. One could physically implement the same abstract Turing machine 

with a silicon-based device, or a slower vacuum-tube device, or an even slower pulley-and-

lever device. Critics recommend that we reject CCTM in favor of some alternative 

framework that more directly incorporates temporal considerations. van Gelder and Port 

(1995) use this argument to promote a non-computational dynamical systems 

framework for modeling mental activity. Eliasmith (2003, 2013: 12–13) uses it to support 

his Neural Engineering Framework. 

Computationalists respond that we can supplement an abstract computational model with 

temporal considerations (Piccinini 2010; Weiskopf 2004). For example, a Turing machine 

model presupposes discrete “stages of computation”, without describing how the stages 

relate to physical time. But we can supplement our model by describing how long each 

stage lasts, thereby converting our non-temporal Turing machine model into a theory that 

yields detailed temporal predictions. Many advocates of CTM employ supplementation 

along these lines to study temporal properties of cognition (Newell 1990). Similar 

supplementation figures prominently in computer science, whose practitioners are quite 

concerned to build machines with appropriate temporal properties. Computationalists 

conclude that a suitably supplemented version of CTM can adequately capture how 

cognition unfolds in time. 

A second temporal objection highlights the contrast 

between discrete and continuous temporal evolution (van Gelder and Port 1995). 

Computation by a Turing machine unfolds in discrete stages, while mental activity unfolds 

in a continuous time. Thus, there is a fundamental mismatch between the temporal 

properties of Turing-style computation and those of actual mental activity. We need a 

psychological theory that describes continuous temporal evolution. 



36 
 

Computationalists respond that this objection assumes what is to be shown: that cognitive 

activity does not fall into explanatory significant discrete stages (Weiskopf 2004). 

Assuming that physical time is continuous, it follows that mental activity unfolds in 

continuous time. It does not follow that cognitive models must have continuous temporal 

structure. A personal computer operates in continuous time, and its physical state evolves 

continuously. A complete physical theory will reflect all those physical changes. But 

our computational model does not reflect every physical change to the computer. Our 

computational model has discrete temporal structure. Why assume that a good cognitive-

level model of the mind must reflect every physical change to the brain? Even if there is a 

continuum of evolving physical states, why assume a continuum of 

evolving cognitive states? The mere fact of continuous temporal evolution does not militate 

against computational models with discrete temporal structure. 

7.5 Embodied cognition 

Embodied cognition is a research program that draws inspiration from the continental 

philosopher Maurice Merleau-Ponty, the perceptual psychologist J.J. Gibson, and other 

assorted influences. It is a fairly heterogeneous movement, but the basic strategy is to 

emphasize links between cognition, bodily action, and the surrounding environment. See 

Varela, Thompson, and Rosch (1991) for an influential early statement. In many cases, 

proponents deploy tools of dynamical systems theory. Proponents typically present their 

approach as a radical alternative to computationalism (Chemero 2009; Kelso 1995; Thelen 

and Smith 1994). CTM, they complain, treats mental activity as static symbol manipulation 

detached from the embedding environment. It neglects myriad complex ways that the 

environment causally or constitutively shapes mental activity. We should replace CTM 

with a new picture that emphasizes continuous links between mind, body, and environment. 

Agent-environment dynamics, not internal mental computation, holds the key to 

understanding cognition. Often, a broadly eliminativist attitude towards intentionality 

propels this critique. 

Computationalists respond that CTM allows due recognition of cognition’s embodiment. 

Computational models can take into account how mind, body, and environment 

continuously interact. After all, computational models can incorporate sensory inputs and 

motor outputs. There is no obvious reason why an emphasis upon agent-environment 

dynamics precludes a dual emphasis upon internal mental computation (Clark 2014: 140–

165; Rupert 2009). Computationalists maintain that CTM can incorporate any legitimate 

insights offered by the embodied cognition movement. They also insist that CTM remains 

our best overall framework for explaining numerous core psychological phenomena. 
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