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Connectionism 

 

Connectionism is an approach to the study of human cognition that 

utilizes mathematical models, known as connectionist networks or 

artificial neural networks.  Often, these come in the form of highly 

interconnected, neuron-like processing units. There is no sharp dividing 

line between connectionism and computational neuroscience, but 

connectionists tend more often to abstract away from the specific details 

of neural functioning to focus on high-level cognitive processes (for 

example, recognition, memory, comprehension, grammatical competence 

and reasoning). During connectionism's ideological heyday in the late 

twentieth century, its proponents aimed to replace theoretical appeals to 

formal rules of inference and sentence-like cognitive representations with 

appeals to the parallel processing of diffuse patterns of neural activity. 

Connectionism was pioneered in the 1940s and had attracted a great deal 

of attention by the 1960s. However, major flaws in the connectionist 

modeling techniques were soon revealed, and this led to reduced interest 

in connectionist research and reduced funding.  But in the 1980s 

connectionism underwent a potent, permanent revival. During the later 

part of the twentieth century, connectionism would be touted by many as 

the brain-inspired replacement for the computational artifact-inspired 

'classical' approach to the study of cognition. Like classicism, 

connectionism attracted and inspired a major cohort of naturalistic 

philosophers, and the two broad camps clashed over whether or not 

connectionism had the wherewithal to resolve central quandaries 

concerning minds, language, rationality and knowledge. More recently, 

connectionist techniques and concepts have helped inspire philosophers 

and scientists who maintain that human and non-human cognition is best 

explained without positing inner representations of the world. Indeed, 

connectionist techniques are now very widely embraced, even if few label 

themselves connectionists anymore. This is an indication of 

connectionism’s success. 
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1. McCulloch and Pitts 
In 1943, neurophysiologist Warren McCulloch and a young logician 

named Walter Pitts demonstrated that neuron-like structures (or units, as 

they were called) that act and interact purely on the basis of a few 

neurophysiologically plausible principles could be wired together and 

thereby be given the capacity to perform complex logical calculation 

(McCulloch & Pitts 1943). They began by noting that the activity of 

neurons has an all-or-none character to it – that is, neurons are either 

‘firing’ electrochemical impulses down their lengthy projections (axons) 

towards junctions with other neurons (synapses) or they are inactive. 

They also noted that in order to become active, the net amount of 

excitatory influence from other neurons must reach a certain threshold 

and that some neurons must inhibit others. These principles can be 

described by mathematical formalisms, which allows for calculation of the 

unfolding behaviors of networks obeying such principles. McCulloch and 

Pitts capitalized on these facts to prove that neural networks are capable 

of performing a variety of logical calculations. For instance, a network of 

three units can be configured so as to compute the fact that a conjunction 

(that is, two complete statements connected by ‘and’) will be true only if 

both component statements are true (Figure 1). Other logical operations 

involving disjunctions (two statements connected by ‘or’) and negations 

can also be computed. McCulloch and Pitts showed how more complex 

logical calculations can be performed by combining the networks for 

simpler calculations. They even proposed that a properly configured 

network supplied with infinite tape (for storing information) and a read-

write assembly (for recording and manipulating that information) would 

be capable of computing whatever any givenTuring machine (that is, a 

machine that can compute any computable function) can. 

http://www.iep.utm.edu/art-inte/#SSH3a.ii
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Figure 1: Conjunction Network We may interpret the top (output) unit as 

representing the truth value of a conjunction (that is, activation value 1 = true and 0 

= false) and the bottom two (input) units as representing the truth values of each 

conjunct. The input units each have an excitatory connection to the output unit, but 

for the output unit to activate the sum of the input unit activations must still exceed a 

certain threshold. The threshold is set high enough to ensure that the output unit 

becomes active just in case both input units are activated simultaneously. Here we 

see a case where only one input unit is active, and so the output unit is inactive. A 

disjunction network can be constructed by lowering the threshold so that the output 

unit will become active if either input unit is fully active. [Created using Simbrain 

2.0] 

 

Somewhat ironically, these proposals were a major source of inspiration 

for John von Neumann’s work demonstrating how a universal Turing 

machine can be created out of electronic components (vacuum tubes, for 

example) (Franklin & Garzon 1996, Boden 2006). Von Neumann’s work 

yielded what is now a nearly ubiquitous programmable computing 

architecture that bears his name. The advent of these electronic 

computing devices and the subsequent development of high-level 

http://www.iep.utm.edu/wp-content/media/Figure-1-Conjunction-Net.gif
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programming languages greatly hastened the ascent of the formal classical 

approach to cognition, inspired by formal logic and based on sentence and 

rule (see Artificial Intelligence). Then again, electronic computers were also 

needed to model the behaviors of complicated neural networks. 

For their part, McCulloch and Pitts had the foresight to see that the future 

of artificial neural networks lay not with their ability to implement formal 

computations, but with their ability to engage in messier tasks like 

recognizing distorted patterns and solving problems requiring the 

satisfaction of multiple 'soft' constraints. However, before we get to these 

developments, we should consider in a bit more detail some of the basic 

operating principles of typical connectionist networks. 

2. Parts and Properties of Connectionist 
Networks 
Connectionist networks are made up of interconnected processing units 

which can take on a range of numerical activation levels (for example, a 

value ranging from 0 – 1). A given unit may have incoming connections 

from, or outgoing connections to, many other units. The excitatory or 

inhibitory strength (or weight) of each connection is determined by its 

positive or negative numerical value. The following is a typical equation 

for computing the influence of one unit on another: 

Influenceiu = ai * wiu 

This says that for any unit i and any unit u to which it is connected, the 

influence of i on u is equal to the product of the activation value of i and 

the weight of the connection from i to u. Thus, if ai = 1 and wiu = .02, then 

the influence of i on u will be 0.02. If a unit has inputs from multiple units, 

thenet influence of those units will just be the sum of these individual 

influences. 

One common sort of connectionist system is the two-layer feed-forward 

network. In these networks, units are segregated into discrete input and 

output layers such that connections run only from the former to the latter. 

Often, every input unit will be connected to every output unit, so that a 

network with 100 units, for instance, in each layer will possess 10,000 

inter-unit connections. Let us suppose that in a network of this very sort 

each input unit is randomly assigned an activation level of 0 or 1 and each 

weight is randomly set to a level between -0.01 to 0.01. In this case, the 

activation level of each output unit will be determined by two factors: 

the net influence of the input units; and the degree to which the output unit 

http://www.iep.utm.edu/a/art-inte.htm
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is sensitive to that influence, something which is determined by 

its activation function. One common activation function is the step function, 

which sets a very sharp threshold. For instance, if the threshold on a given 

output unit were set through a step function at 0.65, the level of activation 

for that unit under different amounts of net input could be graphed out as 

follows: 

 

 

Figure 2: Step Activation Function 

 

Thus, if the input units have a net influence of 0.7, the activation function 

returns a value of 1 for the output unit’s activation level. If they had a net 

influence of 0.2, the output level would be 0, and so on. Another common 

activation that has more of a sigmoid shape to it – that is, graphed out it 

looks something like this: 

http://www.iep.utm.edu/wp-content/media/Figure-2-Step-Function.gif
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Figure 3: Sigmoid Activation Function 

 

Thus, if our net input were 0.7, the output unit would take on an activation 

value somewhere near 0.9. 

Now, suppose that a modeler set the activation values across the input 

units (that is, encodes an input vector) of our 200 unit network so that 

some units take on an activation level of 1 and others take on a value of 0. 

In order to determine what the value of a single output unit would be, one 

would have to perform the procedure just described (that is, calculate the 

net influence and pass it through an activation function). To determine 

what the entire output vector would be, one must repeat the procedure for 

all 100 output units. 

As discussed earlier, the truth-value of a statement can be encoded in 

terms of a unit’s activation level. There are, however, countless other sorts 

of information that can be encoded in terms of unit activation levels. For 

instance, the activation level of each input unit might represent the 

presence or absence of a different animal characteristic (say, “has hooves,” 

“swims,” or “has fangs,”) whereas each output unit represents a particular 

kind of animal (“horse,” “pig,” or “dog,”). Our goal might be to construct a 

model that correctly classifies animals on the basis of their features. We 

might begin by creating a list (a corpus) that contains, for each animal, a 

specification of the appropriate input and output vectors. The challenge is 

then to set the weights on the connections so that when one of these input 

http://www.iep.utm.edu/wp-content/media/Figure-3-Sigmoid-Function.gif
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vectors is encoded across the input units, the network will activate the 

appropriate animal unit at the output layer. Setting these weights by hand 

would be quite tedious given that our network has 10000 weighted 

connections. Researchers would discover, however, that the process of 

weight assignment can be automated. 

 

3. Learning Algorithms 
a. Hebb’s Rule 
The next major step in connectionist research came on the heels of 

neurophysiologist Donald Hebb’s (1949) proposal that the connection 

between two biological neurons is strengthened (that is, the presynaptic 

neuron will come to have an even stronger excitatory influence) when both 

neurons are simultaneously active.  As it is often put, “neurons that fire 

together, wire together.” This principle would be expressed by a 

mathematical formula which came to be known as Hebb’s rule: 

Change of weightiu = ai * au * lrate 

The rule states that the weight on a connection from input unit i to output 

unit u is to be changed by an amount equal to the product of the activation 

value of i, the activation value of u, and a learning rate. [Notice that a large 

learning rate conduces to large weight changes and a smaller learning rate 

to more gradual changes.] Hebb’s rule gave connectionist models the 

capacity to modify the weights on their own connections in light of the 

input-output patterns it has encountered. 

Let us suppose, for the sake of illustration, that our 200 unit network 

started out life with connection weights of 0 across the board. We might 

then take an entry from our corpus of input-output pairs (say, the entry 

for donkeys) and set the input and output values accordingly. Hebb’s rule 

might then be employed to strengthen connections from active input units 

to active output units. [Note: if units are allowed to have weights that vary 

between positive and negative values (for example, between -1 and 1), then 

Hebb’s rule will strengthen connections between units whose activation 

values have the same sign and weaken connections between units with 

different signs.] This procedure could then be repeated for each entry in 

the corpus. Given a corpus of 100 entries and at 10,000 applications of the 

rule per entry, a total of 1,000,000 applications of the rule would be 

required for just one pass through the corpus (called an epoch of training). 

Here, clearly, the powerful number-crunching capabilities of electronic 

computers become essential. 
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Let us assume that we have set the learning rate to a relatively high value 

and that the network has received one epoch of training. What we will find 

is that if a given input pattern from the training corpus is encoded across 

the input units, activity will propagate forward through the connections in 

such a way as to activate the appropriate output unit. That is, our network 

will have learned how to appropriately classify input patterns. 

As a point of comparison, the mainstream approach to artificial 

intelligence (AI) research is basically an offshoot of traditional forms of 

computer programming. Computer programs manipulate sentential 

representations by applying rules which are sensitive to the syntax 

(roughly, the shape) of those sentences. For instance, a rule might be 

triggered at a certain point in processing because a certain input was 

presented – say, “Fred likes broccoli and Sam likes cauliflower.” The rule 

might be triggered whenever a compound sentence of the form p and q is 

input and it might produce as output a sentence of the form p (“Fred likes 

broccoli”). Although this is a vast oversimplification, it does highlight a 

distinctive feature of the classical approach to AI, which is the assumption 

that cognition is effected through the application of syntax-sensitive rules 

to syntactically structured representations. What is distinctive about 

many connectionist systems is that they encode information through 

activation vectors (and weight vectors), and they process that information 

when activity propagates forward through many weighted connections. 

In addition, insofar as connectionist processing is in this way highly 

distributed (that is, many processors and connections simultaneously 

shoulder a bit of the processing load), a network will often continue to 

function even if part of it gets destroyed (if connections are pruned). The 

same kind of parallel and distributed processing (where many processors 

and connections are shouldering a bit of the processing load 

simultaneously) that enables this kind of graceful degradation also allows 

connectionist systems to respond sensibly to noisy or otherwise imperfect 

inputs. For instance, even we encoded an input vector that deviated from 

the one  for donkeys but was still closer to the donkey vector than to any 

other, our model would still likely classify it as a donkey. Traditional forms 

of computer programming, on the other hand, have a much greater 

tendency to fail or completely crash due to even minor imperfections in 

either programming code or inputs. 
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The advent of connectionist learning rules was clearly a watershed event 

in the history of connectionism. It made possible the automation of vast 

numbers of weight assignments, and this would eventually enable 

connectionist systems to perform feats that McCulloch and Pitts could 

scarcely have imagined. As a learning rule for feed-forward networks, 

however, Hebb’s rule faces severe limitations. Particularly damaging is the 

fact that the learning of one input-output pair (anassociation) will in many 

cases disrupt what a network has already learned about other 

associations, a process known as catastrophic interference. Another 

problem is that although a set of weights oftentimes exists that would 

allow a network to perform a given pattern association task, oftentimes its 

discovery is beyond the capabilities of Hebb’s rule. 

 

b. The Delta Rule 
Such shortcomings led researchers to investigate new learning rules, one 

of the most important being the delta rule. To train our network using the 

delta rule, we it out with random weights and feed it a particular input 

vector from the corpus. Activity then propagates forward to the output 

layer. Afterwards, for a given unit u at the output layer, the network takes 

the actual activation of uand its desired activation and modifies weights 

according to the following rule: 

Change of weightiu = learning rate * (desiredu - au) * ai 

That is, to modify a connection from input i to output u, the delta rule 

computes the product of the difference between the desired activation 

of u and the actual activation (the error score), the activation of i, and a 

(typically very small) learning rate. Thus, assuming that unit u should be 

fully active (but is not) and input i happens to be highly active, the delta 

rule will increase the strength of the connection from i to u. This will make 

it more likely that the next time i is highly active, uwill be too. If, on the 

other hand, u should have been inactive but was not, the connection 

from i tou will be pushed in a negative direction. As with Hebb’s rule, when 

an input pattern is presented during training, the delta rule is used to 

calculate how the weights from each input unit to a given output unit are 

to be modified, a procedure repeated for each output unit. The next item 

on the corpus is then input to the network and the process repeats, until 

the entire corpus (or at least that part of it that the researchers want the 

network to encounter) has been run through. Unlike Hebb’s rule, the delta 

rule typically makes small weight changes, meaning that several epochs of 
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training may be required before a network achieves competent 

performance. Again unlike Hebb’s rule, however,  the delta rule will in 

principle always slowly converge on a set of weights that will allow for 

mastery of all associations in a corpus, provided that such a set of weights 

exists. Famed connectionist Frank Rosenblatt called networks of the sort 

lately discussed perceptrons. He also proved the foregoing truth about 

them, which became known as the perceptron convergence theorem. 

Rosenblatt believed that his work with perceptrons constituted a radical 

departure from, and even spelled the beginning of the end of, logic-based 

classical accounts of information processing (1958, 449; see also Bechtel 

& Abrahamson 2002, 6). Rosenblatt was very much concerned with the 

abstract information-processing powers of connectionist systems, but 

others, like Oliver Selfridge (1959), were investigating the ability of 

connectionist systems to perform specific cognitive tasks, such as 

recognizing handwritten letters. Connectionist models began around this 

time to be implemented with the aid of Von Neumann devices, which, for 

reasons already mentioned, proved to be a blessing. 

There was much exuberance associated with connectionism during this 

period, but it would not last long. Many point to the publication 

of Perceptrons by prominent classical AI researchers Marvin Minsky and 

Seymour Papert (1969) as the pivotal event. Minsky and Papert showed 

(among other things) that perceptrons cannot learn some sets of 

associations. The simplest of these is a mapping from truth values of 

statements p and q to the truth value of p XOR q (where p XOR qis true, 

just in case p is true or q is true but not both). No set of weights will enable 

a simple two-layer feed-forward perceptron to compute the XOR function. 

The fault here lies largely with the architecture, for feed-forward networks 

with one or more layers of hidden units intervening between input and 

output layers (see Figure 4) can be made to perform the sorts of mappings 

that troubled Minsky and Papert. However, these critics also speculated 

that three-layer networks could never be trained to converge upon the 

correct set of weights. This dealt connectionists a serious setback, for it 

helped to deprive connectionists of the AI research funds being doled out 

by the Defense Advanced Research Projects Agency (DARPA). 

Connectionists found themselves at a major competitive disadvantage, 

leaving classicists with the field largely to themselves for over a decade. 
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c. The Generalized Delta Rule 
In the 1980s, as classical AI research was hitting doldrums of its own, 

connectionism underwent a powerful resurgence thanks to the advent of 

the generalized delta rule (Rumelhart, Hinton, & Williams 1986). This rule, 

which is still the backbone of contemporary connectionist research, 

enables networks with one or more layers of hidden units to learn how to 

perform sets of input-output mappings of the sort that troubled Minsky 

and Papert. The simpler delta rule (discussed above) uses an error score 

(the difference between the actual activation level of an output unit and 

its desired activation level) and the incoming unit’s activation level to 

determine how much to alter a given weight. The generalized delta rule 

works roughly the same way for the layer of connections running from the 

final layer of hidden units to the output units. For a connection running 

into a hidden unit, the rule calculates how much the hidden unit 

contributed to the total error signal (the sum of the individual output unit 

error signals) rather than the error signal of any particular unit.  It adjust 

the connection from a unit in a still earlier layer to that hidden unit based 

upon the activity of the former and based upon the latter’s contribution to 

the total error score. This process can be repeated for networks of varying 

depth. Put differently, the generalized delta rule enables backpropagation 

learning, where an error signal propagates backwards through multiple 

layers in order to guide weight modifications. 
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Figure 4: Three-layer Network [Created using Simbrain 2.0] 

 

 

4. Connectionist Models Aplenty 
Connectionism sprang back onto the scene in 1986 with a monumental 

two-volume compendium of connectionist modeling techniques (volume 

1) and models of psychological processes (volume 2) by David Rumelhart, 

James McClelland and their colleagues in the Parallel Distributed 

Processing (PDP) research group. Each chapter of the second volume 

describes a connectionist model of some particular cognitive process 

along with a discussion of how the model departs from earlier ways of 

understanding that process. It included models of schemata (large scale 

data structures), speech recognition, memory, language comprehension, 

spatial reasoning and past-tense learning. Alongside this compendium, 

and in its wake, came a deluge of further models. 

Although this new breed of connectionism was occasionally lauded as 

marking the next great paradigm shift in cognitive science, mainstream 

connectionist research has not tended to be directed at overthrowing 

previous ways of thinking. Rather, connectionists seem more interested in 

offering a deeper look at facets of cognitive processing that have already 

http://www.iep.utm.edu/wp-content/media/Figure-4-Backprop-Net.gif
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been recognized and studied in disciplines like cognitive psychology, 

cognitive neuropsychology and cognitive neuroscience. What are highly 

novel are the claims made by connectionists about the precise form of 

internal information processing. Before getting to those claims, let us first 

discuss a few other connectionist architectures. 

 

a. Elman’s Recurrent Nets 
Over the course of his investigation into whether or not a connectionist 

system can learn to master the complicated grammatical principles of a 

natural language such as English, Jeffrey Elman (1990) helped to pioneer 

a powerful, new connectionist architecture, sometimes known as an 

Elman net. This work posed a direct challenge to Chomsky’s proposal that 

humans are born with an innate language acquisition device, one that 

comes preconfigured with vast knowledge of the space of possible 

grammatical principles. One of Chomsky’s main arguments against 

Skinner’s behaviorist theory of language-learning was that no general 

learning principles could enable humans to produce and comprehend a 

limitless number of grammatical sentences. Although connectionists had 

attempted (for example, with the aid of finite state grammars) to show 

that human languages could be mastered by general learning devices, 

sentences containing multiple center-embedded clauses (“The cats the 

dog chases run away,” for instance) proved a major stumbling block. To 

produce and understand such a sentence requires one to be able to 

determine subject-verb agreements across the boundaries of multiple 

clauses by attending to contextual cues presented over time. All of this 

requires a kind of memory for preceding context that standard feed-

forward connectionist systems lack. 

Elman’s solution was to incorporate a side layer of context units that 

receive input from and send output back to a hidden unit layer. In its 

simplest form, an input is presented to the network and activity 

propagates forward to the hidden layer. On the next step (or cycle) of 

processing, the hidden unit vector propagates forward through weighted 

connections to generate an output vector while at the same time being 

copied onto a side layer of context units. When the second input is 

presented (the second word in a sentence, for example), the new hidden 

layer activation is the product of both this second input and activity in the 
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context layer – that is, the hidden unit vector now contains information 

about both the current input and the preceding one. The hidden unit 

vector then produces an output vector as well as a new context vector. 

When the third item is input, a new hidden unit vector is produced that 

contains information about all of the previous time steps, and so on. This 

process provides Elman’s networks with time-dependent contextual 

information of the sort required for language-processing. Indeed, his 

networks are able to form highly accurate predictions regarding which 

words and word forms are permissible in a given context, including those 

that involve multiple embedded clauses. 

While Chomsky (1993) has continued to self-consciously advocate a shift 

back towards the nativist psychology of the rationalists, Elman and other 

connectionists have at least bolstered the plausibility of a more austere 

empiricist approach. Connectionism is, however, much more than a 

simple empiricist associationism, for it is at least compatible with a more 

complex picture of internal dynamics. For one thing, to maintain 

consistency with the findings of mainstream neuropsychology, 

connectionists ought to (and one suspects that most do) allow that we do 

not begin life with a uniform, amorphous cognitive mush. Rather, as 

mentioned earlier, the cognitive load may be divided among numerous, 

functionally distinct components. Moreover, even individual feed-forward 

networks are often tasked with unearthing complicated statistical patterns 

exhibited in large amounts of data. An indication of just how complicated 

a process this can be, the task of analyzing how it is that connectionist 

systems manage to accomplish the impressive things that they do has 

turned out to be a major undertaking unto itself (see Section 5). 

 

b. Interactive Architectures 
There are, it is important to realize, connectionist architectures that do 

not incorporate the kinds of feed-forward connections upon which we 

have so far concentrated. For instance, McClelland and Rumelhart's 

(1989) interactive activation and competition (IAC) architecture and its 

many variants utilize excitatory and inhibitory connections that run back 

and forth between the units in different groups. In IAC models, weights 

are hard-wired rather than learned and units are typically assigned their 

own particular, fixed meanings. When a set of units is activated so as to 
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encode some piece of information, activity may shift around a bit, but as 

units compete with one another to become most active through inter-unit 

inhibitory connections activity will eventually settle into a stable state. The 

stable state may be viewed, depending upon the process being modeled, 

as the network's reaction to the stimulus, which, depending upon the 

process being modeled, might be viewed as a semantic interpretation, a 

classification or a mnemonic association. The IAC architecture has proven 

particularly effective at modeling phenomena associated with long-term 

memory (content addressability, priming and language comprehension, 

for instance). The connection weights in IAC models can be set in various 

ways, including on the basis of individual hand selection, simulated 

evolution or statistical analysis of naturally occurring data (for example, 

co-occurrence of words in newspapers or encyclopedias (Kintsch 1998)). 

An architecture that incorporates similar competitive processing 

principles, with the added twist that it allows weights to be learned, is the 

self-organizing feature map (SOFM) (see Kohonen 1983; see also 

Miikkulainen 1993). SOFMs learn to map complicated input vectors onto 

the individual units of a two-dimensional array of units. Unlike feed-

forward systems that are supplied with information about the correct 

output for a given input, SOFMs learn in an unsupervised manner. Training 

consists simply in presenting the model with numerous input vectors. 

During training the network adjusts its inter-unit weights so that both 

each unit is highly ‘tuned’ to a specific input vector and the two-

dimensional array is divided up in ways that reflect the most salient 

groupings of vectors. In principle, nothing more complicated than a 

Hebbian learning algorithm is required to train most SOFMs. After 

training, when an input pattern is presented, competition yields a single 

clear winner (for example, the most highly active unit), which is called the 

system’s image (or interpretation) of that input. 

SOFMs were coming into their own even during the connectionism 

drought of the 1970s, thanks in large part to Finnish researcher Tuevo 

Kohonen. Ultimately it was found that with proper learning procedures, 

trained SOFMs exhibit a number of biologically interesting features that 

will be familiar to anyone who knows a bit about topographic maps (for 

example, retinotopic, tonotopic and somatotopic) in the mammalian 

cortex. SOFMs tend not to allow a portion of the map go unused; they 

represent similar input vectors with neighboring units, which collectively 
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amount to a topographic map of the space of input vectors; and if a 

training corpus contains many similar input vectors, the portion of the 

map devoted to the task of discriminating between them will expand, 

resulting in a map with a distorted topography. SOFMs have even been 

used to model the formation of retinotopically organized columns of 

contour detectors found in the primary visual cortex (Goodhill 1993). 

SOFMs thus reside somewhere along the upper end of the biological-

plausibility continuum. 

Here we have encountered just a smattering of connectionist learning 

algorithms and architectures, which continue to evolve. Indeed, despite 

what in some quarters has been a protracted and often heated debate 

between connectionists and classicists (discussed below), many 

researchers are content to move back and forth between, and also to 

merge, the two approaches depending upon the task at hand. 

 

5. Making Sense of Connectionist Processing 
Connectionist systems generally learn by detecting complicated statistical 

patterns present in huge amounts of data. This often requires detection of 

complicated cues as to the proper response to a given input, the salience 

of which often varies with context. This can make it difficult to determine 

precisely how a given connectionist system utilizes its units and 

connections to accomplish the goals set for it. 

One common way of making sense of the workings of connectionist 

systems is to view them at a coarse, rather than fine, grain of analysis -- to 

see them as concerned with the relationships between different activation 

vectors, not individual units and weighted connections. Consider, for 

instance, how a fully trained Elman network learns how to process 

particular words. Typically nouns like “ball,” “boy,” “cat,” and “potato” will 

produce hidden unit activation vectors that are more similar to one 

another (they tend to cluster together) than they are to “runs,” “ate,” and 

“coughed”. Moreover, the vectors for “boy” and “cat” will tend to be more 

similar to each other than either is to the “ball” or “potato” vectors. One 

way of determining that this is the case is to begin by conceiving activation 

vectors as points within a space that has as many dimensions as there are 
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units. For instance, the activation levels of two units might be represented 

as a single point in a two-dimensional plane where the y axis represents 

the value of the first unit and the x axis represents the second unit. This is 

called the state space for those units. Thus, if there are two units whose 

activation values are 0.2 and 0.7, this can be represented as the point 

where these two values intersect (Figure 5). 

 

 

Figure 5: Activation of Two Units Plotted as Point in 2-D State Space 

 

The activation levels of three units can be represented as the point in a 

cube where the three values intersect, and so on for other numbers of 

units. Of course, there is a limit to the number of dimensions we can depict 

or visualize, but there is no limit to the number of dimensions we can 

represent algebraically. Thus, even where many units are involved, 

activation vectors can be represented as points in high-dimensional space 

and the similarity of two vectors can be determined by measuring the 

proximity of those points in high-dimensional state space. This, however, 

tells us nothing about the way context determines the specific way in 

which networks represent particular words. Other techniques (for 

example, principal components analysis and multidimensional scaling) 

have been employed to understand such subtleties as the context-sensitive 

time-course of processing. 

One of the interesting things revealed about connectionist systems 

through these sorts of techniques has been that networks which share the 

http://www.iep.utm.edu/wp-content/media/Figure-5-2D-State-Space.gif
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same connection structure but begin training with different random 

starting weights will often learn to perform a given task equally well and 

to do so by partitioning hidden unit space in similar ways. For instance, 

the clustering in Elman’s models discussed above will likely obtain for 

different networks even though they have very different weights and 

activities at the level of individual connections and units. 

At this point, we are also in a good position to understand some 

differences in how connectionist networks code information. In the 

simplest case, a particular unit will represent a particular piece of 

information – for instance, our hypothetical network about animals uses 

particular units to represent particular features of animals. This is called 

a localist encoding scheme. In other cases an entire collection of activation 

values is taken to represents something – for instance, an entire input 

vector of our hypothetical animal classification network might represent 

the characteristics of a particular animal. This is a distributed 

coding scheme at the whole animal level, but still a local encoding scheme 

at the feature level. When we turn to hidden-unit representations, 

however, things are often quite different. Hidden-unit representations of 

inputs are often distributed without employing localist encoding at the 

level of individual units. That is, particular hidden units often fail to have 

any particular input feature that they are exclusively sensitive to. Rather, 

they participate in different ways in the processing of many different kinds 

of input. This is calledcoarse coding, and there are ways of coarse coding 

input and output patterns as well. The fact that connectionist networks 

excel at forming and processing these highly distributed representations 

is one of their most distinctive and important features. 

Also important is that connectionist models often excel at processing 

novel input patterns (ones not encountered during training) 

appropriately. Successful performance of a task will oftengeneralize to 

other related tasks. This is because connectionist models often work by 

detecting statistical patterns present in a corpus (of input-output pairs, 

for instance). They learn to process particular inputs in particular ways, 

and when they encounter inputs similar to those encountered during 

training they process them in a similar manner. For instance, Elman’s 

networks were trained to determine which words and word forms to 

expect given a particular context (for example, “The boy threw the 

______”). After training, they could do this very well even for sentence 



21 
 

parts they ha not encountered before. One caveat here is that 

connectionist systems with numerous hidden units (relative to the 

amount of variability in the training corpus) tend to use the extra memory 

to ‘remember by rote’ how to treat specific input patterns rather than 

discerning more abstract statistical patterns obtaining across many 

different input-output vectors. Consequently, in such cases performance 

tends not to generalize to novel cases very well. 

As we have seen, connectionist networks have a number of desirable 

features from a cognitive modeling standpoint. There are, however, also 

serious concerns about connectionism. One is that connectionist models 

must usually undergo a great deal of training on many different inputs in 

order to perform a task and exhibit adequate generalization. In many 

instances, however, we can form a permanent memory (upon being told 

of a loved one’s passing, for example) with zero repetition (this was also a 

major blow to the old psychological notion that rehearsal is required for a 

memory to make it into long-term storage). Nor is there much need to fear 

that subsequent memories will overwrite earlier ones, a process known in 

connectionist circles as catastrophic interference. We can also very quickly 

detect patterns in stimuli (for instance, the pattern exhibited by “J, M, 

P…”) and apply them to new stimuli (for example, “7, 10, 13…”). 

Unfortunately, many (though not all) connectionist networks (namely 

many back-propagation networks) fail to exhibit one-shot learning and 

are prone to catastrophic interference. 

Another worry about back-propagation networks is that the generalized 

delta rule is, biologically speaking, implausible. It certainly does look that 

way so far, but even if the criticism hits the mark we should bear in mind 

the difference between computability theory questions and learning 

theory questions. In the case of connectionism, questions of the former 

sort concern what sorts of things connectionist systems can and cannot do 

and questions of the latter address how connectionist systems might come 

to learn (or evolve) the ability to do these things. The back-propagation 

algorithm makes the networks that utilize them implausible from the 

perspective of learning theory, not computability theory. It should, in 

other words, be viewed as a major accomplishment when a connectionist 

network that utilizes only biologically plausible processing principles (, 

activation thresholds and weighted connections) is able to perform a 

cognitive task that had hitherto seemed mysterious. It constitutes a 

biologically plausible model of the underlying mechanisms regardless of 
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whether or not it came possess that structure through hand-selection of 

weights, Hebbian learning, back-propagation or simulated evolution. 

 

6. Connectionism and the Mind 
The classical conception of cognition was deeply entrenched in philosophy 

(namely in empirically oriented philosophy of mind) and cognitive science 

when the connectionist program was resurrected in the 1980s. 

Nevertheless, many researchers flocked to connectionism, feeling that it 

held much greater promise and that it might revamp our common-sense 

conception of ourselves. During the early days of the ensuing controversy, 

the differences between connectionist and classical models of cognition 

seemed to be fairly stark. Connectionist networks learned how to engage 

in the parallel processing of highly distributed representations and were 

fault tolerant because of it. Classical systems were vulnerable to 

catastrophic failure due to their reliance upon the serial application of 

syntax-sensitive rules to syntactically structured (sentence-like) 

representations. Connectionist systems superimposed many kinds of 

information across their units and weights, whereas classical systems 

stored separate pieces of information in distinct memory registers and 

accessed them in serial fashion on the basis of their numerical addresses. 

Perhaps most importantly, connectionism promised to bridge low-level 

neuroscience and high-level psychology. Classicism, by contrast, lent itself 

to dismissive views about the relevance of neuroscience to psychology. It 

helped spawn the idea that cognitive processes can be realized by any of 

countless distinct physical substrates (see Multiple Realizability). The basic 

idea here is that if the mind is just a program being run by the brain, the 

material substrate through which the program is instantiated drops out as 

irrelevant. After all, computationally identical computers can be made out 

of neurons, vacuum tubes, microchips, pistons and gears, and so forth, 

which means that computer programs can be run on highly heterogeneous 

machines. Neural nets are but one of these types, and so they are of no 

essential relevance to psychology. On the connectionist view, by contrast, 

human cognition can only be understood by paying considerable attention 

to kind of physical mechanism that instantiates it. 

http://www.iep.utm.edu/mult-rea/
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Although these sorts of differences seemed fairly stark in the early days of 

the connectionism-classicism debate, proponents of the classical 

conception have recently made great progress emulating the 

aforementioned virtues of connectionist processing. For instance, 

classical systems have been implemented with a high degree of 

redundancy, through the action of many processors working in parallel, 

and by incorporating fuzzier rules to allow for input variability. In these 

ways, classical systems can be endowed with a much higher level of fault 

and noise tolerance, not to mention processing speed (See Bechtel & 

Abrahamson 2002). We should also not lose sight of the fact that classical 

systems have virtually always been capable of learning. They have, in 

particular, long excelled at learning new ways to efficiently search 

branching problem spaces. That said, connectionist systems seem to have 

a very different natural learning aptitude – namely, they excel at picking 

up on complicated patterns, sub-patterns, and exceptions, and apparently 

without the need for syntax-sensitive inference rules. This claim has, 

however, not gone uncontested. 

 

a. Rules versus General Learning Mechanisms: The 
Past-Tense Controversy 
Rumelhart and McClelland’s (1986) model of past-tense learning has long 

been at the heart of this particular controversy. What these researchers 

claimed to have shown was that over the course of learning how to produce 

past-tense forms of verbs, their connectionist model naturally exhibited 

the same distinctive u-shaped learning curve as children. Of particular 

interest was the fact that early in the learning process children come to 

generate the correct past-tense forms of a number of verbs, mostly 

irregulars (“go” → “went”). Later, performance drops precipitously as they 

pick up on certain fairly general principles (for example, adding “-ed”) and 

over-apply them even to previously learned irregulars (“went” may 

become “goed”). Lastly, performance increases as the child learns both the 

rules and their exceptions. 

What Rumelhart and McClelland (1986) attempted to show was that this 

sort of process need not be underwritten by mechanisms that work by 

applying physically and functionally distinct rules to representations. 
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Instead, all of the relevant information can be stored in superimposed 

fashion within the weights of a connectionist network (really three of them 

linked end-to-end). Pinker and Prince (1988), however, would charge 

(inter alia) that the picture of linguistic processing painted by Rumelhart 

and McClelland was extremely simplistic and that their training corpus 

was artificially structured (namely, that the proportion of regular to 

irregular verbs varied unnaturally over the course of training) so as to 

elicit u-shaped learning. Plunkett and Marchman (1993) went a long way 

towards remedying the second apparent defect, though Marcus (1995) 

complained that they did not go far enough since the proportion of regular 

to irregular verbs was still not completely homogenous throughout 

training. As with most of the major debates constituting the broader 

connectionist-classicist controversy, this one has yet to be conclusively 

resolved. Nevertheless, it seems clear that this line of connectionist 

research does at least suggest something of more general importance – 

namely, that an interplay between a structured environment and general 

associative learning mechanisms might in principle conspire so as to yield 

complicated behaviors of the sort that lead some researchers to posit inner 

classical process. 

 

b. Concepts 
Some connectionists also hope to challenge the classical account of concepts, 

which embody knowledge of categories and kinds. It has long been widely 

held that concepts specify the singularly necessary and jointly sufficient 

conditions for category membership – for instance, “bachelor” might be 

said to apply to all and only unmarried, eligible males. Membership 

conditions of this sort would give concepts a sharp, all-or-none character, 

and they naturally lend themselves to instantiation in terms of formal 

inference rules and sentential representations. However, 

asWittgenstein (1953) pointed out, many words (for example, “game”) 

seem to lack these sorts of strict membership criteria. Instead, their 

referents bear a much looser family resemblance relation to one another. 

Rosch & Mervis (1975) later provided apparent experimental support for 

the related idea that our knowledge of categories is organized not in terms 

of necessary and sufficient conditions but rather in terms of clusters of 

features, some of which (namely those most frequently encountered in 

http://www.iep.utm.edu/conc-cl/
http://www.iep.utm.edu/concepts/
http://www.iep.utm.edu/wittgens/
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category members) are more strongly associated with the category than 

others. For instance, the ability to fly is more frequently encountered in 

birds than is the ability to swim, though neither ability is common to all 

birds. On the prototype view (and also on the closely related exemplar 

view), category instances are thought of as clustering together in what 

might be thought of as a hyper-dimensional semantic space (a space in 

which there are as many dimensions as there are relevant features). In this 

space, the prototype is the central region around which instances cluster 

(exemplar theory essentially does away with this abstract region, allowing 

only for memory of actual concrete instances). There are clearly 

significant isomorphisms between concepts conceived of in this way and 

the kinds of hyper-dimensional clusters of hidden unit representations 

formed by connectionist networks, and so the two approaches are often 

viewed as natural allies (Horgan & Tienson 1991). This way of thinking 

about concepts has, of course, not gone unchallenged (see Rey 1983 and 

Barsalou 1987 for two very different responses). 

 

 

c. Connectionism and Eliminativism 
Neuroscientist Patricia Churchland and philosopher Paul Churchland 

have argued that connectionism has done much to weaken the plausibility 

of our pre-scientific conception of mental processes (our folk psychology). 

Like other prominent figures in the debate regarding connectionism and 

folk psychology, the Churchlands appear to be heavily influenced 

by Wilfrid Sellars’ view that folk psychology is a theory that enables 

predictions and explanations of everyday behaviors, a theory that posits 

internal manipulation to the sentence-like representations of the things 

that we believe and desire. The classical conception of cognition is, 

accordingly, viewed as a natural spinoff of this folk theory. The 

Churchlands maintain that neither the folk theory nor the classical theory 

bears much resemblance to the way in which representations are actually 

stored and transformed in the human brain. What leads many astray, say 

Churchland and Sejnowski (1990), is the idea that the structure of an 

effect directly reflects the structure of its cause (as exemplified by the 

homuncular theory of embryonic development). Thus, many mistakenly 

think that the structure of the language through which we express our 

thoughts is a clear indication of the structure of the thoughts themselves. 

The Churchlands think that connectionism may afford a glimpse into the 

http://www.iep.utm.edu/sellars/
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future of cognitive neuroscience, a future wherein the classical conception 

is supplanted by the view that thoughts are just points in hyper-

dimensional neural state space and sequences of thoughts are trajectories 

through this space (see Churchland 1989). 

A more moderate position on these issues has been advanced by Daniel 

Dennett (1991) who largely agrees with the Churchlands in regarding the 

broadly connectionist character of our actual inner workings. He also 

maintains, however, that folk psychology is for all practical purposes 

indispensible. It enables us to adopt a high-level stance towards human 

behavior wherein we are able to detect patterns that we would miss if we 

restricted ourselves to a low-level neurological stance. In the same way, he 

claims, one can gain great predictive leverage over a chess-playing 

computer by ignoring the low-level details of its inner circuitry and 

treating it as a thinking opponent. Although an electrical engineer who 

had perfect information about the device’s low-level inner working could 

in principle make much more accurate predictions about its behavior, she 

would get so bogged down in those low-level details as to make her greater 

predictive leverage useless for any real-time practical purposes. The chess 

expert wisely forsakes some accuracy in favor of a large increase in 

efficiency when he treats the machine as a thinking opponent, an 

intentional agent. Dennett maintains that we do the same when we adopt 

an intentional stance towards human behavior. Thus, although 

neuroscience will not discover any of the inner sentences (putatively) 

posited by folk psychology, a high-level theoretical apparatus that 

includes them is an indispensable predictive instrument. 

On a related note, McCauley (1986) claims that whereas it is relatively 

common for one high-level  theory to be eliminated in favor of another, it 

is much harder to find examples where a high-level theory is eliminated 

in favor of a lower-level theory in the way that the Churchlands envision. 

However, perhaps neither Dennett nor McCauley are being entirely fair to 

the Churchlands in this regard. What the Churchlands foretell is the 

elimination of a high-level folk theory in favor of another high-level theory 

that emanates out of connectionist and neuroscientific research. 

Connectionists, we have seen, look for ways of understanding how their 

models accomplish the tasks set for them by abstracting away from neural 

particulars. The Churchlands, one might argue, are no exception. Their 

view that sequences are trajectories through a hyperdimensional 
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landscape abstracts away from most neural specifics, such as action 

potentials and inhibitory neurotransmitters. 

 

d. Classicists on the Offensive: Fodor and Pylyshyn’s 
Critique 
When connectionism reemerged in the 1980s, it helped to foment 

resistance to both classicism and folk psychology. In response, stalwart 

classicists Jerry Fodor and Zenon Pylyshyn (1988) formulated a trenchant 

critique of connectionism. One imagines that they hoped to do for the new 

connectionism what Chomsky did for the associationist psychology of the 

radical behaviorists and what Minsky and Papert did for the old 

connectionism. They did not accomplish that much, but they did succeed 

in framing the debate over connectionism for years to come. Though their 

criticisms of connectionism were wide-ranging, they were largely aimed 

at showing that connectionism could not account for important 

characteristics of human thinking, such as its generally truth-preserving 

character, its productivity, and (most important of all) its systematicity. 

Of course they had no qualms with the proposal that vaguely 

connectionist-style processes happen, in the human case, to implement 

high-level, classical computations. 

 

i. Reason 
Unlike Dennett and the Churchlands, Fodor and Pylyshyn (F&P) claim 

that folk psychology works so well because it is largely correct. On their 

view, human thinking involves the rule-governed formulation and 

manipulation of sentences in an inner linguistic code (sometimes 

calledmentalese). [Incidentally, one of the main reasons why classicists 

maintain that thinking occurs in a special 'thought language' rather than 

in one’s native natural language is that they want to preserve the notion 

that people who speak different languages can nevertheless think the 

same thoughts – for instance, the thought that snow is white.] One bit of 

evidence that Fodor frequently marshals in support of this proposal is the 

putative fact that human thinking typically progresses in a largely truth-

preserving manner. That is to say, if one’s initial beliefs are true, the 

subsequent beliefs that one infers from them are also likely to be true. For 

instance, from the belief that the ATM will not give you any money and 

http://www.iep.utm.edu/behavior/
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the belief that it gave money to the people before and after you in line, you 

might reasonably form a new belief that there is something wrong with 

either your card or your account. Says Fodor (1987), if thinking were not 

typically truth-preserving in this way, there wouldn’t be much point in 

thinking. Indeed, given a historical context in which philosophers 

throughout the ages frequently decried the notion that any mechanism 

could engage in reasoning, it is no small matter that early work in AI 

yielded the first fully mechanical models and perhaps even artificial 

implementations of important facets of human reasoning. On the classical 

conception, this can be done through the purely formal, syntax-sensitive 

application of rules to sentences insofar as the syntactic properties mirror 

the semantic ones. Logicians of the late nineteenth and early 

twentieth century showed how to accomplish just this in the abstract, so 

all that was left was to figure out (as von Neumann did) how to realize 

logical principles in artifacts. 

F&P (1988) argue that connectionist systems can only ever realize the 

same degree of truth preserving processing by implementing a classical 

architecture. This would, on their view, render connectionism a sub-

cognitive endeavor. One way connectionists could respond to this 

challenge would be to create connectionist systems that support truth-

preservation without any reliance upon sentential representations or 

formal inference rules. Bechtel and Abrahamson (2002) explore another 

option, however, which is to situate important facets of rationality in 

human interactions with the external symbols of natural and formal 

languages. Bechtel and Abrahamson argue that “the ability to 

manipulate external symbols in accordance with the principles of logic 

need not depend upon a mental mechanism that itself 

manipulates internal symbols” (1991, 173). This proposal is backed by a 

pair of connectionist models that learn to detect patterns during the 

construction of formal deductive proofs and to use this information to 

decide on the validity of arguments and to accurately fill in missing 

premises. 

 

ii. Productivity and Systematicity 
Much more attention has been pain to other aspects of F&P’s (1988) 

critique, such as their claim that only a classical architecture can account 

for the productivity and systematicity of thought. To better understand 
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the nature of their concerns, it might help if we first consider the putative 

productivity and systematicity of natural languages. 

Consider, to start with, the following sentence: 

(1)  “The angry jay chased the cat.” 

The rules governing English appear to license (1), but not (2), which is 

made from (modulocapitalization) qualitatively identical parts: 

(2)  “Angry the the chased jay cat.” 

We who are fluent in some natural language have knowledge of the rules 

that govern the permissible ways in which the basic components of that 

language can be arranged – that is, we have mastery of the syntax of the 

language. 

Sentences are, of course, also typically intended to carry or convey some 

meaning. The meaning of a sentence, say F&P (1988), is determined by 

the meanings of the individual constituents and by the manner in which 

they are arranged. Thus (3), which is made from the same constituents as 

(1), conveys a very different meaning. 

(3)  “The angry cat chased the jay.” 

Natural language expressions, in other words, have a combinatorial 

syntax and semantics. 

In addition, natural languages appear to be characterized by 

certain recursive rules which enable the production of an infinite variety of 

syntactically distinct sentences. For instance, in English one such rule 

allows any two grammatical statements to be combined with ‘and’. Thus, 

if (1) and (3) are grammatical, so is this: 

(4)  “The angry jay chased the cat and the angry cat chased the jay.” 

Sentence (4) too can be combined with another, as in (5) which conjoins 

(4) and (3): 

“The angry jay chased the cat and the angry cat chased the jay, and the 

angry cat chased the jay.” 
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Earlier we discussed another recursive principle which allows for center-

embedded clauses. 

One who has mastered the combinatorial and recursive syntax and 

semantics of a natural language is, according to classicists like F&P 

(1988), thereby capable in principle of producing and comprehending an 

infinite number of grammatically distinct sentences. In other words, their 

mastery of these linguistic principles gives them a productive linguistic 

competence. It is also reputed to give them a systematic competence, in 

that a fluent language user who can produce and understand one sentence 

can produce and understand systematic variants. A fluent English speaker 

who can produce and understand (1) will surely be able to produce and 

understand (3). It is, on the other hand, entirely possible for one who has 

learned English from a phrase-book (that is, without learning the 

meanings of the constituents or the combinatorial semantics of the 

language) to be able to produce and understand (1) but not its systematic 

variant (3). 

Thinking, F&P (1988) claim, is also productive and systematic, which is to 

say that we are capable of thinking an infinite variety of thoughts and that 

the ability to think some thoughts is intrinsically connected with the 

ability to think others. For instance, on this view, anyone who can think 

the thought expressed by (1) will be able to think the thought expressed by 

(3). Indeed, claims Fodor (1987), since to understand a sentence is to 

entertain the thought the sentence expresses, the productivity and 

systematicity of language imply the productivity and systematicity of 

thought. F&P (1988) also maintain that just as the productivity and 

systematicity of language is best explained by its combinatorial and 

recursive syntax and semantics, so too is the productivity and 

systematicity of thought. Indeed, they say, this is the only explanation 

anyone has ever offered. 

The systematicity issue has generated a vast debate (see Bechtel & 

Abrahamson 2002), but one general line of connectionist response has 

probably garnered the most attention. This approach, which appeals to 

functional rather than literal compositionality (see van Gelder 1990), is 

most often associated with Smolensky (1990) and with Pollack (1990), 

though for simplicity’s sake discussion will be restricted to the latter. 
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Pollack (1990) uses recurrent connectionist networks to generate 

compressed, distributed encodings of syntactic strings and subsequently 

uses those encodings to either recreate the original string or to perform a 

systematic transformation of it (e.g., from “Mary loved John” to “John 

loved Mary”). Pollack’s approach was quickly extended by Chalmers 

(1990), who showed that one could use such compressed distributed 

representations to perform systematic transformations (namely moving 

from an active to a passive form) of even sentences with complex 

embedded clauses. He showed that this could be done for both familiar 

and novel sentences. What this suggests is that connectionism might offer 

its own unique, non-classical account of the apparent systematicity of 

thought processes. However, Fodor and McLaughlin (1990) argue that 

such demonstrations only show that networks can be forced to exhibit 

systematic processing, not that they exhibit it naturally in the way that 

classical systems do. After all, on a classical account, the same rules that 

license one expression will automatically license its systematic variant. It 

bears noting, however, that this approach may itself need to impose some 

ad hoc constraints in order to work. Aizawa (1997) points out, for instance, 

that many classical systems do not exhibit systematicity. On the flipside, 

Matthews (1997) notes that systematic variants that are licensed by the 

rules of syntax need not be thinkable. Waskan (2006) makes a similar 

point, noting that thinking may be more and less systematic than language 

and that the actual degree to which thought is systematic may be best 

accounted for by, theoretically speaking, pushing the structure of the 

world ‘up’ into the thought medium, rather than pushing the structure of 

language ‘down’. This might, however, come as cold comfort to 

connectionists, for it appears to merely replace one competitor to 

connectionism with another. 

 

7. Anti-Represenationalism: Dynamical Stystems 
Theory, A-Life and Embodied Cognition 
As alluded to above, whatever F&P may have hoped, connectionism has 

continued to thrive. Connectionist techniques are now employed in 

virtually every corner of cognitive science. On the other hand, despite what 

connectionists may have wished for, these techniques have not come close 

to fully supplanting classical ones. There is now much more of a peaceful 

coexistence between the two camps. Indeed, what probably seems far 

more important to both sides these days is the advent and promulgation 
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of approaches that reject or downplay central assumptions of both 

classicists and mainstream connectionists, the most important being that 

human cognition is largely constituted by the creation, manipulation, 

storage and utilization of representations. Many cognitive researchers 

who identify themselves with the dynamical systems, artificial life and 

(albeit to a much lesser extent) embodied cognition endorse the doctrine 

that one version of the world is enough. Even so, practitioners of the first 

two approaches have often co-opted connectionist techniques and 

terminology. In closing, let us briefly consider the rationale behind each 

of these two approaches and their relation to connectionism. 

Briefly, dynamical systems theorists adopt a very high-level perspective 

on human behavior (inner and/or outer) that treats its state at any given 

time as a point in high-dimensional space (where the number of 

dimensions is determined by the number of numerical variables being 

used to quantify the behavior) and treats its time course as a trajectory 

through that space (van Gelder & Port 1995). As connectionist research 

has revealed, there tend to be regularities in the trajectories taken by 

particular types of system through their state spaces. As paths are plotted, 

it is often as if the trajectory taken by a system gets attracted to certain 

regions and repulsed by others, much like a marble rolling across a 

landscape can get guided by valleys, roll away from peaks, and get trapped 

in wells (local or global minima). The general goal is to formulate equations 

like those at work in the physical sciences that will capture such 

regularities in the continuous time-course of behavior. Connectionist 

systems have often provided nice case studies in how to characterize a 

system from the dynamical systems perspective. However, whether 

working from within this perspective in physics or in cognitive science, 

researchers find little need to invoke the ontologically strange category of 

representations in order to understand the time course of a system’s 

behavior. 

Researchers in artificial life primarily focus on creating artificial creatures 

(virtual or real) that can navigate environments in a fully autonomous 

manner. The strategy generally favored by artificial life researchers is to 

start small, with a simple behavior repertoire, to test one’s design in an 

environment (preferably a real one), to adjust it until success is achieved, 

and then to gradually add layers of complexity by repeating this process. 

In one early and influential manifesto of the 'a-life' movement, Rodney 

Brooks claims, “When intelligence is approached in an incremental 

http://www.iep.utm.edu/embodcog/
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manner, with strict reliance on interfacing to the real world through 

perception and action, reliance on representation disappears” (Brooks 

1991). The aims of a-life research are sometimes achieved through the 

deliberate engineering efforts of modelers, but connectionist learning 

techniques are also commonly employed, as are simulated evolutionary 

processes (processes that operate over both the bodies and brains of 

organisms, for instance). 

 

8. Where Have All the Connectionists Gone? 
There perhaps may be fewer today who label themselves “connectionists” 

than there were during the 1990s. Fodor & Pylyshyn’s (1988) critique may 

be partly responsible for this shift, though it is probably more because the 

novelty of the approach has worn off and the initial fervor died down. Also 

to blame may be the fact that connectionist techniques are now very 

widely employed throughout cognitive science, often by people who have 

very little in common ideologically. It is thus increasingly hard to discern 

among those who utilize connectionist modeling techniques any one 

clearly demarcated ideology or research program. Even many of those 

who continue to maintain an at least background commitment to the 

original ideals of connectionism might nowadays find that there are 

clearer ways of signaling who they are and what they care about than to 

call themselves “connectionists.” In any case, whether connectionist 

techniques are limited in some important respects or not, it is perfectly 

clear is that connectionist modeling techniques are still powerful and 

flexible enough as to have been widely embraced by philosophers and 

cognitive scientists, whether they be mainstream moderates or radical 

insurgents. It is therefore hard to imagine any technological or theoretical 

development that would lead to connectionism’s complete abandonment. 

Thus, despite some early fits and starts, connectionism is now most 

assuredly here to stay. 
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b. Connectionism Freeware 
 BugBrain provides an excellent, accessible, and highly entertaining game-based 

hands-on tutorial on the basics of neural networks and gives one a good idea of 

what a-life is all about as well. BugBrain comes with some learning components, 

but they are not recommended. 

 Emergent is research-grade software that accompanies O'Reilly and 

Munakata’s Computational explorations in cognitive neuroscience (referenced 

above). 

 Simbrain is a fairly accessible, but somewhat weak, tool for implementing a 

variety of common neural network architectures. 

 Framsticks is a wonderful program that enables anyone with the time and 

patience to evolve virtual stick creatures and their neural network controllers. 
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