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Connectionism is a movement in cognitive science that hopes to 
explain intellectual abilities using artificial neural networks (also 
known as ‘neural networks’ or ‘neural nets’). Neural networks are 
simplified models of the brain composed of large numbers of units 
(the analogs of neurons) together with weights that measure the 
strength of connections between the units. These weights model 
the effects of the synapses that link one neuron to another. 
Experiments on models of this kind have demonstrated an ability 
to learn such skills as face recognition, reading, and the detection 
of simple grammatical structure. 

Philosophers have become interested in connectionism because it 
promises to provide an alternative to the classical theory of the 
mind: the widely held view that the mind is something akin to a 
digital computer processing a symbolic language. Exactly how and 
to what extent the connectionist paradigm constitutes a challenge 
to classicism has been a matter of hot debate in recent years. 
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1. A Description of Neural Networks 
A neural network consists of large number of units joined together 
in a pattern of connections. Units in a net are usually segregated 
into three classes: input units, which receive information to be 
processed, output units where the results of the processing are 
found, and units in between called hidden units. If a neural net 
were to model the whole human nervous system, the input units 
would be analogous to the sensory neurons, the output units to 
the motor neurons, and the hidden units to all other neurons. 

 

Here is a simple illustration of a simple neural net: 

 

 

Each input unit has an activation value that represents some 
feature external to the net. An input unit sends its activation value 
to each of the hidden units to which it is connected. Each of these 
hidden units calculates its own activation value depending on the 
activation values it receives from the input units. This signal is 
then passed on to output units or to another layer of hidden units. 
Those hidden units compute their activation values in the same 
way, and send them along to their neighbors. Eventually the signal 
at the input units propagates all the way through the net to 
determine the activation values at all the output units. 

The pattern of activation set up by a net is determined by the 
weights, or strength of connections between the units. Weights 
may be either positive or negative. A negative weight represents the 
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inhibition of the receiving unit by the activity of a sending unit. 
The activation value for each receiving unit is calculated according 
a simple activation function. Activation functions vary in detail, 
but they all conform to the same basic plan. The function sums 
together the contributions of all sending units, where the 
contribution of a unit is defined as the weight of the connection 
between the sending and receiving units times the sending unit's 
activation value. This sum is usually modified further, for example, 
by adjusting the activation sum to a value between 0 and 1 and/or 
by setting the activation to zero unless a threshold level for the 
sum is reached. Connectionists presume that cognitive functioning 
can be explained by collections of units that operate in this way. 
Since it is assumed that all the units calculate pretty much the 
same simple activation function, human intellectual 
accomplishments must depend primarily on the settings of the 
weights between the units. 

The kind of net illustrated above is called a feed forward net. 
Activation flows directly from inputs to hidden units and then on 
to the output units. More realistic models of the brain would 
include many layers of hidden units, and recurrent connections 
that send signals back from higher to lower levels. Such recurrence 
is necessary in order to explain such cognitive features as short-
term memory. In a feed forward net, repeated presentations of the 
same input produce the same output every time, but even the 
simplest organisms habituate to (or learn to ignore) repeated 
presentation of the same stimulus. Connectionists tend to avoid 
recurrent connections because little is understood about the 
general problem of training recurrent nets. However Elman (1991) 
and others have made some progress with simple recurrent nets, 
where the recurrence is tightly constrained. 

 

2. Neural Network Learning and 

Backpropagation 
Finding the right set of weights to accomplish a given task is the 
central goal in connectionist research. Luckily, learning algorithms 
have been devised that can calculate the right weights for carrying 
out many tasks. (See Hinton 1992 for an accessible review.) These 
fall into two broad categories: supervised and unsupervised 
learning. Hebbian learning is the best known unsupervised form. 
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As each input is presented to the net, weights between nodes that 
are active together are increased, while those weights connecting 
nodes that are not active together are decreased. This form of 
training is especially useful for building nets that can classify the 
input into useful categories. The most widely used supervised 
algorithm is called backpropagation. To use this method, one 
needs a training set consisting of many examples of inputs and 
their desired outputs for a given task. This external set of examples 
“supervises” the training process. One of the most widely used of 
these training methods is called backpropagation. To use this 
method one needs a training set consisting of many examples of 
inputs and their desired outputs for a given task. If, for example, 
the task is to distinguish male from female faces, the training set 
might contain pictures of faces together with an indication of the 
sex of the person depicted in each one. A net that can learn this 
task might have two output units (indicating the categories male 
and female) and many input units, one devoted to the brightness 
of each pixel (tiny area) in the picture. The weights of the net to be 
trained are initially set to random values, and then members of the 
training set are repeatedly exposed to the net. The values for the 
input of a member are placed on the input units and the output of 
the net is compared with the desired output for this member. Then 
all the weights in the net are adjusted slightly in the direction that 
would bring the net's output values closer to the values for the 
desired output. For example, when male's face is presented to the 
input units the weights are adjusted so that the value of the male 
output unit is increased and the value of the female output unit is 
decreased. After many repetitions of this process the net may learn 
to produce the desired output for each input in the training set. If 
the training goes well, the net may also have learned to generalize 
to the desired behavior for inputs and outputs that were not in the 
training set. For example, it may do a good job of distinguishing 
males from females in pictures that were never presented to it 
before. 

Training nets to model aspects of human intelligence is a fine art. 
Success with backpropagation and other connectionist learning 
methods may depend on quite subtle adjustment of the algorithm 
and the training set. Training typically involves hundreds of 
thousands of rounds of weight adjustment. Given the limitations 
of computers presently available to connectionist researchers, 
training a net to perform an interesting task may take days or even 
weeks. Some of the difficulty may be resolved when parallel circuits 
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specifically designed to run neural network models are widely 
available. But even here, some limitations to connectionist theories 
of learning will remain to be faced. Humans (and many less 
intelligent animals) display an ability to learn from single events; 
for example an animal that eats a food that later causes gastric 
distress will never try that food again. Connectionist learning 
techniques such as backpropagation are far from explaining this 
kind of ‘one shot’ learning. 

 

3. Samples of What Neural Networks Can Do 
Connectionists have made significant progress in demonstrating 
the power of neural networks to master cognitive tasks. Here are 
three well-known experiments that have encouraged 
connectionists to believe that neural networks are good models of 
human intelligence. One of the most attractive of these efforts is 
Sejnowski and Rosenberg's 1987 work on a net that can read 
English text called NET talk. The training set for NET talk was a 
large data base consisting of English text coupled with its 
corresponding phonetic output, written in a code suitable for use 
with a speech synthesizer. Tapes of NET talk's performance at 
different stages of its training are very interesting listening. At first 
the output is random noise. Later, the net sounds like it is 
babbling, and later still as though it is speaking English double-
talk (speech that is formed of sounds that resemble English words). 
At the end of training, NET talk does a fairly good job of 
pronouncing the text given to it. Furthermore, this ability 
generalizes fairly well to text that was not presented in the training 
set. 

Another influential early connectionist model was a net trained by 
Rumelhart and McClelland (1986) to predict the past tense of 
English verbs. The task is interesting because although most of 
the verbs in English (the regular verbs) form the past tense by 
adding the suffix ‘-ed’, many of the most frequently verbs are 
irregular (‘is’ / ‘was’, ‘come’ / ‘came’, ‘go’ / ‘went’). The net was first 
trained on a set containing a large number of irregular verbs, and 
later on a set of 460 verbs containing mostly regulars. The net 
learned the past tenses of the 460 verbs in about 200 rounds of 
training, and it generalized fairly well to verbs not in the training 
set. It even showed a good appreciation of “regularities” to be found 
among the irregular verbs (‘send’ / ‘sent’, ‘build’ / ‘built’; ‘blow’ / 
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‘blew’, ‘fly’ / ‘flew’). During learning, as the system was exposed to 
the training set containing more regular verbs, it had a tendency 
to overregularize, i.e., to combine both irregular and regular forms: 
(‘break’ / ‘broked’, instead of ‘break’ / ‘broke’). This was corrected 
with more training. It is interesting to note that children are known 
to exhibit the same tendency to overregularize during language 
learning. However, there is hot debate over whether Rumelhart and 
McClelland's is a good model of how humans actually learn and 
process verb endings. For example, Pinker & Prince (1988) point 
out that the model does a poor job of generalizing to some novel 
regular verbs. They believe that this is a sign of a basic failing in 
connectionist models. Nets may be good at making associations 
and matching patterns, but they have fundamental limitations in 
mastering general rules such as the formation of the regular past 
tense. These complaints raise an important issue for connectionist 
modelers, namely whether nets can generalize properly to master 
cognitive tasks involving rules. Despite Pinker and Prince's 
objections, many connectionists believe that generalization of the 
right kind is still possible (Niklasson and van Gelder 1994). 

Elman's 1991 work on nets that can appreciate grammatical 
structure has important implications for the debate about whether 
neural networks can learn to master rules. Elman trained a simple 
recurrent network to predict the next word in a large corpus of 
English sentences. The sentences were formed from a simple 
vocabulary of 23 words using a subset of English grammar. The 
grammar, though simple, posed a hard test for linguistic 
awareness. It allowed unlimited formation of relative clauses while 
demanding agreement between the head noun and the verb. So for 
example, in the sentence 

Any man that chases dogs that chase cats … runs. 

the singular ‘man’ must agree with the verb ‘runs’ despite the 
intervening plural nouns (‘dogs’, ‘cats’) which might cause the 
selection of ‘run’. One of the important features of Elman's model 
is the use of recurrent connections. The values at the hidden units 
are saved in a set of so called context units, to be sent back to the 
input level for the next round of processing. This looping back from 
hidden to input layers provides the net with a rudimentary form of 
memory of the sequence of words in the input sentence. Elman's 
nets displayed an appreciation of the grammatical structure of 
sentences that were not in the training set. The net's command of 
syntax was measured in the following way. Predicting the next 
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word in an English sentence is, of course, an impossible task. 
However, these nets succeeded, at least by the following measure. 
At a given point in an input sentence, the output units for words 
that are grammatical continuations of the sentence at that point 
should be active and output units for all other words should be 
inactive. After intensive training, Elman was able to produce nets 
that displayed perfect performance on this measure including 
sentences not in the training set. The work of Christiansen and 
Chater (1999a) and Morris et al. (2000) extends this research to 
more complex grammars. For a broader view of progress in 
connectionist natural language processing see summaries by 
Christiansen and Chater (1999b), and Rhode and Plaut (2004). 

Although this performance is impressive, there is still a long way 
to go in training nets that can process a language like English. 
Furthermore, doubts have been raised about the significance of 
Elman's results. For example, Marcus (1998, 2001) argues that 
Elman's nets are not able to generalize this performance to 
sentences formed from a novel vocabulary. This, he claims, is a 
sign that connectionist models merely associate instances, and are 
unable to truly master abstract rules. On the other hand, Phillips 
(2002) argues that classical architectures are no better off in this 
respect. The purported inability of connectionist models to 
generalize performance in this way has become an important 
theme in the systematicity debate. (See Section 7 below.) 

A somewhat different concern about the adequacy of connectionist 
language processing focuses on tasks that mimic infant learning 
of simple artificial grammars. Data on reaction time confirms that 
infants can learn to distinguish well-formed from ill-formed 
sentences in a novel language created by experimenters. Shultz 
and Bale (2001) report success in training neural nets on the same 
task. Vilcu and Hadley (2005) object that this work fails to 
demonstrate true acquisition of the grammar, but see Shultz and 
Bale (2006) for a detailed reply. 

 

4. Strengths and Weaknesses of Neural Network 

Models 
Philosophers are interested in neural networks because they may 
provide a new framework for understanding the nature of the mind 
and its relation to the brain (Rumelhart and McClelland 1986, 
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Chapter 1). Connectionist models seem particularly well matched 
to what we know about neurology. The brain is indeed a neural 
net, formed from massively many units (neurons) and their 
connections (synapses). Furthermore, several properties of neural 
network models suggest that connectionism may offer an 
especially faithful picture of the nature of cognitive processing. 
Neural networks exhibit robust flexibility in the face of the 
challenges posed by the real world. Noisy input or destruction of 
units causes graceful degradation of function. The net's response 
is still appropriate, though somewhat less accurate. In contrast, 
noise and loss of circuitry in classical computers typically result in 
catastrophic failure. Neural networks are also particularly well 
adapted for problems that require the resolution of many 
conflicting constraints in parallel. There is ample evidence from 
research in artificial intelligence that cognitive tasks such as object 
recognition, planning, and even coordinated motion present 
problems of this kind. Although classical systems are capable of 
multiple constraint satisfaction, connectionists argue that neural 
network models provide much more natural mechanisms for 
dealing with such problems. 

Over the centuries, philosophers have struggled to understand 
how our concepts are defined. It is now widely acknowledged that 
trying to characterize ordinary notions with necessary and 
sufficient conditions is doomed to failure. Exceptions to almost any 
proposed definition are always waiting in the wings. For example, 
one might propose that a tiger is a large black and orange feline. 
But then what about albino tigers? Philosophers and cognitive 
psychologists have argued that categories are delimited in more 
flexible ways, for example via a notion of family resemblance or 
similarity to a prototype. Connectionist models seem especially 
well suited to accommodating graded notions of category 
membership of this kind. Nets can learn to appreciate subtle 
statistical patterns that would be very hard to express as hard and 
fast rules. Connectionism promises to explain flexibility and 
insight found in human intelligence using methods that cannot be 
easily expressed in the form of exception free principles (Horgan 
and Tienson 1989, 1990), thus avoiding the brittleness that arises 
from standard forms of symbolic representation. 

Despite these intriguing features, there are some weaknesses in 
connectionist models that bear mentioning. First, most neural 
network research abstracts away from many interesting and 



9 
 

possibly important features of the brain. For example, 
connectionists usually do not attempt to explicitly model the 
variety of different kinds of brain neurons, nor the effects of 
neurotransmitters and hormones. Furthermore, it is far from clear 
that the brain contains the kind of reverse connections that would 
be needed if the brain were to learn by a process like 
backpropagation, and the immense number of repetitions needed 
for such training methods seems far from realistic. Attention to 
these matters will probably be necessary if convincing 
connectionist models of human cognitive processing are to be 
constructed. A more serious objection must also be met. It is 
widely felt, especially among classicists, that neural networks are 
not particularly good at the kind of rule based processing that is 
thought to undergird language, reasoning, and higher forms of 
thought. (For a well known critique of this kind see Pinker and 
Prince 1988.) We will discuss the matter further when we turn 
to the systematicity debate. 

 

5. The Shape of the Controversy between 

Connectionists and Classicists 
The last forty years have been dominated by the classical view that 
(at least higher) human cognition is analogous to symbolic 
computation in digital computers. On the classical account, 
information is represented by strings of symbols, just as we 
represent data in computer memory or on pieces of paper. The 
connectionist claims, on the other hand, that information is stored 
non-symbolically in the weights, or connection strengths, between 
the units of a neural net. The classicist believes that cognition 
resembles digital processing, where strings are produced in 
sequence according to the instructions of a (symbolic) program. 
The connectionist views mental processing as the dynamic and 
graded evolution of activity in a neural net, each unit's activation 
depending on the connection strengths and activity of its 
neighbors, according to the activation function. 

On the face of it, these views seem very different. However many 
connectionists do not view their work as a challenge to classicism 
and some overtly support the classical picture. So-called 
implementational connectionists seek an accommodation between 
the two paradigms. They hold that the brain's net implements a 

http://plato.stanford.edu/entries/connectionism/#SysDeb
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symbolic processor. True, the mind is a neural net; but it is also a 
symbolic processor at a higher and more abstract level of 
description. So the role for connectionist research according to the 
implementationalist is to discover how the machinery needed for 
symbolic processing can be forged from neural network materials, 
so that classical processing can be reduced to the neural network 
account. 

However, many connectionists resist the implementational point of 
view. Such radical connectionists claim that symbolic processing 
was a bad guess about how the mind works. They complain that 
classical theory does a poor job of explaining graceful degradation 
of function, holistic representation of data, spontaneous 
generalization, appreciation of context, and many other features of 
human intelligence which are captured in their models. The failure 
of classical programming to match the flexibility and efficiency of 
human cognition is by their lights a symptom of the need for a new 
paradigm in cognitive science. So radical connectionists would 
eliminate symbolic processing from cognitive science forever. 

The controversy between radical and implementational 
connectionists is complicated by the invention of what are called 
hybrid connectionist architectures. Here elements of classical 
symbolic processing are included in neural nets (Wermter and 
Sun, 2000). For example, Miikkulainen (1993) champions a 
complex collection of neural net modules that share data coded in 
activation patterns. Since one of the modules acts as a memory, 
the system taken as a whole resembles a classical processor with 
separate mechanisms for storing and operating on digital “words”. 
Smolensky (1991) is famous for inventing so called tensor product 
methods for simulating the process of variable binding, where 
symbolic information is stored at and retrieved from known 
“locations”. More recently, Eliasmith (2013) has proposed complex 
and massive architectures that use what are called semantic 
pointers, which exhibit features of classical variable binding. Once 
hybrid architectures such as these are on the table, it becomes 
more difficult to classify a given connectionist model as radical or 
merely implementational. This opens the interesting prospect that 
whether symbolic processing is actually present in the human 
brain may turn out to be a matter of degree. 
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6. Connectionist Representation 
Connectionist models provide a new paradigm for understanding 
how information might be represented in the brain. A seductive 
but naive idea is that single neurons (or tiny neural bundles) might 
be devoted to the representation of each thing the brain needs to 
record. For example, we may imagine that there is a grandmother 
neuron that fires when we think about our grandmother. However, 
such local representation is not likely. There is good evidence that 
our grandmother thought involves complex patterns of activity 
distributed across relatively large parts of cortex. 

It is interesting to note that distributed, rather than local 
representations on the hidden units are the natural products of 
connectionist training methods. The activation patterns that 
appear on the hidden units while NETtalk processes text serve as 
an example. Analysis reveals that the net learned to represent such 
categories as consonants and vowels, not by creating one unit 
active for consonants and another for vowels, but rather in 
developing two different characteristic patterns of activity across 
all the hidden units. 

Given the expectations formed from our experience with local 
representation on the printed page, distributed representation 
seems both novel and difficult to understand. But the technique 
exhibits important advantages. For example, distributed 
representations, (unlike symbols stored in separate fixed memory 
locations) remain relatively well preserved when parts of the model 
are destroyed or overloaded. More importantly, since 
representations are coded in patterns rather than firings of 
individual units, relationships between representations are coded 
in the similarities and differences between these patterns. So the 
internal properties of the representation carry information on what 
it is about (Clark 1993, 19). In contrast, local representation is 
conventional. No intrinsic properties of the representation (a unit's 
firing) determine its relationships to the other symbols. This self-
reporting feature of distributed representations promises to resolve 
a philosophical conundrum about meaning. In a symbolic 
representational scheme, all representations are composed out of 
symbolic atoms (like words in a language). Meanings of complex 
symbol strings may be defined by the way they are built up out of 
their constituents, but what fixes the meanings of the atoms? 
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Connectionist representational schemes provide an end run 
around the puzzle by simply dispensing with atoms. Every 
distributed representation is a pattern of activity across all the 
units, so there is no principled way to distinguish between simple 
and complex representations. To be sure, representations are 
composed out of the activities of the individual units. But none of 
these ‘atoms’ codes for any symbol. The representations are sub-
symbolic in the sense that analysis into their components leaves 
the symbolic level behind. 

The sub-symbolic nature of distributed representation provides a 
novel way to conceive of information processing in the brain. If we 
model the activity of each neuron with a number, then the activity 
of the whole brain can be given by a giant vector (or list) of 
numbers, one for each neuron. Both the brain's input from sensory 
systems and its output to individual muscle neurons can also be 
treated as vectors of the same kind. So the brain amounts to a 
vector processor, and the problem of psychology is transformed 
into questions about which operations on vectors account for the 
different aspects of human cognition. 

Sub-symbolic representation has interesting implications for the 
classical hypothesis that the brain must contain symbolic 
representations that are similar to sentences of a language. This 
idea, often referred to as the language of thought (or LOT) thesis 
may be challenged by the nature of connectionist representations. 
It is not easy to say exactly what the LOT thesis amounts to, but 
van Gelder (1990) offers an influential and widely accepted 
benchmark for determining when the brain should be said to 
contain sentence-like representations. It is that when a 
representation is tokened one thereby tokens the constituents of 
that representation. For example, if I write ‘John loves Mary’ I have 
thereby written the sentence's constituents: ‘John’ ‘loves’ and 
‘Mary’. Distributed representations for complex expressions like 
‘John loves Mary’ can be constructed that do not contain any 
explicit representation of their parts (Smolensky 1991). The 
information about the constituents can be extracted from the 
representations, but neural network models do not need to 
explicitly extract this information themselves in order to process it 
correctly (Chalmers 1990). This suggests that neural network 
models serve as counterexamples to the idea that the language of 
thought is a prerequisite for human cognition. However, the matter 
is still a topic of lively debate (Fodor 1997). 
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The novelty of distributed and superimposed connectionist 
information storage naturally causes one to wonder about the 
viability of classical notions of symbolic computation in describing 
the brain. Ramsey (1997) argues that though we may attribute 
symbolic representations to neural nets, those attributions do not 
figure in legitimate explanations of the model's behavior. This 
claim is important because the classical account of cognitive 
processing, (and folk intuitions) presume that representations play 
an explanatory role in understanding the mind. It has been widely 
thought that cognitive science requires, by its very nature, 
explanations that appeal to representations (Von Eckardt 2003). If 
Ramsey is right, the point may cut in two different ways. Some 
may use it to argue for a new and non-classical understanding of 
the mind, while others would use it to argue that connectionism is 
inadequate since it cannot explain what it must. However, 
Haybron (2000) argues against Ramsey that there is ample room 
for representations with explanatory role in radical connectionist 
architectures. Roth (2005) makes the interesting point that 
contrary to first impressions, it may also make perfect sense to 
explain a net's behavior by reference to a computer program, even 
if there is no way to discriminate a sequence of steps of the 
computation through time. 

The debate concerning the presence of classical representations 
and a language of thought has been clouded by lack of clarity in 
defining what should count as the representational “vehicles” in 
distributed neural models. Shea (2007) makes the point that the 
individuation of distributed representations should be defined by 
the way activation patterns on the hidden units cluster together. 

It is the relationships between clustering regions in the space of 
possible activation patterns that carry representational content, 
not the activations themselves, nor the collection of units 
responsible for the activation. On this understanding, prospects 
are improved for locating representational content in neural nets 
that can be compared in nets of different architectures, that is 
causally involved in processing, and which overcomes some 
objections to holistic accounts of meaning. 

In a series of papers Horgan and Tienson (1989, 1990) have 
championed a view called representations without rules. According 
to this view classicists are right to think that human brains (and 
good connectionist models of them) contain explanatorily robust 
representations; but they are wrong to think that those 
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representations enter in to hard and fast rules like the steps of a 
computer program. The idea that connectionist systems may follow 
graded or approximate regularities (“soft laws” as Horgan and 
Tienson call them) is intuitive and appealing. However, Aizawa 
(1994) argues that given an arbitrary neural net with a 
representation level description, it is always possible to outfit it 
with hard and fast representation-level rules. Guarini (2001) 
responds that if we pay attention to notions of rule following that 
are useful to cognitive modeling, Aizawa's constructions will seem 
beside the point. 

 

7. The Systematicity Debate 
The major points of controversy in the philosophical literature on 
connectionism have to do with whether connectionists provide a 
viable and novel paradigm for understanding the mind. One 
complaint is that connectionist models are only good at processing 
associations. But such tasks as language and reasoning cannot be 
accomplished by associative methods alone and so connectionists 
are unlikely to match the performance of classical models at 
explaining these higher-level cognitive abilities. However, it is a 
simple matter to prove that neural networks can do anything that 
symbolic processors can do, since nets can be constructed that 
mimic a computer's circuits. So the objection can not be that 
connectionist models are unable to account for higher cognition; it 
is rather that they can do so only if they implement the classicist's 
symbolic processing tools. Implementational connectionism may 
succeed, but radical connectionists will never be able to account 
for the mind. 

Fodor and Pylyshyn's often cited paper (1988) launches a debate 
of this kind. They identify a feature of human intelligence called 
systematicity which they feel connectionists cannot explain. The 
systematicity of language refers to the fact that the ability to 
produce/understand/think some sentences is intrinsically 
connected to the ability to produce/understand/think others of 
related structure. For example, no one with a command of English 
who understands ‘John loves Mary’ can fail to understand ‘Mary 
loves John.’ From the classical point of view, the connection 
between these two abilities can easily be explained by assuming 
that masters of English represent the constituents (‘John’, ‘loves’ 
and ‘Mary’) of ‘John loves Mary’ and compute its meaning from the 
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meanings of these constituents. If this is so, then understanding a 
novel sentence like ‘Mary loves John’ can be accounted for as 
another instance of the same symbolic process. In a similar way, 
symbolic processing would account for the systematicity of 
reasoning, learning and thought. It would explain why there are 

no people who are capable of concluding P from P & (Q & R), but 
incapable of concluding P from P & Q, why there are no people 
capable of learning to prefer a red cube to green square who cannot 
learn to prefer a green cube to the red square, and why there isn't 
anyone who can think that John loves Mary who can't also think 
that Mary loves John. 

Fodor and McLaughlin (1990) argue in detail that connectionists 
do not account for systematicity. Although connectionist models 
can be trained to be systematic, they can also be trained, for 
example, to recognize ‘John loves Mary’ without being able to 
recognize ‘Mary loves John.’ Since connectionism does not 
guarantee systematicity, it does not explain why systematicity is 
found so pervasively in human cognition. Systematicity may exist 
in connectionist architectures, but where it exists, it is no more 
than a lucky accident. The classical solution is much better, 
because in classical models, pervasive systematicity comes for free. 

The charge that connectionist nets are disadvantaged in explaining 
systematicity has generated a lot of interest. Chalmers (1993) 
points out that Fodor and Pylyshyn's argument proves too much, 
for it entails that all neural nets, even those that implement a 
classical architecture, do not exhibit systematicity. Given the 
uncontroversial conclusion that the brain is a neural net, it would 
follow that systematicity is impossible in human thought. Another 
often mentioned point of rebuttal (Aizawa 1997; Matthews 1997; 
Hadley 1997b) is that classical architectures do no better at 
explaining systematicity. There are also classical models that can 
be programmed to recognize ‘John loves Mary’ without being able 
to recognize ‘Mary loves John,’ for this depends on exactly which 
symbolic rules govern the classical processing. The point is that 
neither the use of connectionist architecture alone nor the use of 
classical architecture alone enforces a strong enough constraint to 
explain pervasive systematicity. In both architectures, further 
assumptions about the nature of the processing must be made to 
ensure that ‘Mary loves John’ and ‘John loves Mary’ are treated 
alike. 
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A discussion of this point should mention Fodor and McLaughlin's 
requirement that systematicity be explained as a matter of nomic 
necessity, that is, as a matter of natural law. The complaint against 
connectionists is that while they may implement systems that 
exhibit systematicity, they will not have explained it unless it 
follows from their models as a nomic necessity. However, the 
demand for nomic necessity is a very strong one, and one that 
classical architectures clearly cannot meet either. So the only 
tactic for securing a telling objection to connectionists along these 
lines would be to weaken the requirement on the explanation of 
systematicity to one which classical architectures can and 
connectionists cannot meet. A convincing case of this kind has yet 
to be made. 

As the systematicity debate has evolved, attention has been 
focused on defining the benchmarks that would answer Fodor and 
Pylyshyn's challenge. Hadley (1994a, 1994b) distinguishes three 
brands of systematicity. Connectionists have clearly demonstrated 
the weakest of these by showing that neural nets can learn to 
correctly recognize novel sequences of words (e.g., ‘Mary loves 
John’) that were not in the training set. However, Hadley claims 
that a convincing rebuttal must demonstrate strong systematicity, 
or better, strong semantical systematicity. Strong systematicity 
would require (at least) that ‘Mary loves John’ be recognized even 
if ‘Mary’ never appears in the subject position in any sentence in 
the training set. Strong semantical systematicity would require as 
well that the net show abilities at correct semantical processing of 
the novel sentences rather than merely distinguishing 
grammatical from ungrammatical forms. Niklasson and van Gelder 
(1994) have claimed success at strong systematicity, though 
Hadley complains that this is at best a borderline case. Hadley and 
Hayward (1997) tackle strong semantical systematicity, but by 
Hadley's own admission it is not clear that they have avoided the 
use of a classical architecture. Boden and Niklasson (2000) claim 
to have constructed a model that meets at least the spirit of strong 
semantical systematicity, but Hadley (2004) argues that even 
strong systematicity has not been demonstrated there. Whether 
one takes a positive or a negative view of these attempts, it is safe 
to say that no one has met the challenge of providing a neural net 
capable of learning complex semantical processing that generalizes 
to a full range of truly novel inputs. 
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Research on nets that clearly demonstrate strong systematicity 
has continued. Jansen and Watter (2012) provide a good summary 
of more recent efforts along these lines, and propose an interesting 
basis for solving the problem. They use a more complex 
architecture that combines unsupervised self-organizing maps 
with features of simple recurrent nets. However, the main 
innovation is to allow codes for the words being processed to 
represent sensory-motor features of what the words represent. 
Once trained, their nets displayed very good accuracy in 
distinguishing the grammatical features of sentences whose words 
never even appeared in the training set. This may appear to be 
cheating since the word codes might surreptitiously represent 
grammatical categories, or at least they may unfairly facilitate 
learning those categories. Jansen and Watter note however, that 
the sensory-motor features of what a word represents are apparent 
to a child who has just acquired a new word, and so that 
information is not off-limits in a model of language learning. They 
make the interesting observation that a solution to the 
systematicity problem may require including sources of 
environmental information that have so far been ignored in 
theories of language learning. This work complicates the 
systematicity debate, since it opens a new worry about what 
information resources are legitimate in responding to the 
challenge. However, this reminds us that architecture alone 
(whether classical or connectionist) is not going to solve the 
systematicity problem in any case, so the interesting questions 
concern what sources of supplemental information are needed to 
make the learning of grammar possible. 

Kent Johnson (2004) argues that the whole systematicity debate is 
misguided. Attempts at carefully defining the systematicity of 
language or thought leaves us with either trivialities or falsehoods. 
Connectionists surely have explaining to do, but Johnson 
recommends that it is fruitless to view their burden under the 
rubric of systematicity. Aizawa (2014) also suggests the debate is 
no longer germaine given the present climate in cognitive science. 
What is needed instead is the development of neurally plausible 
connectionist models capable of processing a language with a 
recursive syntax, which react immediately to the introduction of 
new items in the lexicon without introducing the features of 
classical architecture. The ‘systematicity’ debate may have already 
gone as Johnson advises, for Hadley’s demand for strong 
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semantical systematicity may be thought of as the requirement 
that connectionists exhibit success in that direction. 

It has been over twenty-five years since the systematicity debate 
first began, with over 2,600 citations to Fodor and Pylyshyn’s 
original paper. So this brief account is necessarily incomplete, and 
no doubt, biased. Aizawa (2003) provides an excellent view of the 
literature, and Calvo and Symons (2014) serves as another more 
recent resource. 

 

8. Connectionism and Semantic Similarity 
One of the attractions of distributed representations in 
connectionist models is that they suggest a solution to the problem 
of determining the meanings of brain states. The idea is that the 
similarities and differences between activation patterns along 
different dimensions of neural activity record semantical 
information. In this way, the similarity properties of neural 
activations provide intrinsic properties that fix meaning. However, 
Fodor and Lepore (1992, Ch. 6) challenge similarity based 
accounts on two fronts. The first problem is that human brains 
presumably vary significantly in the number of and connections 
between their neurons. Although it is straightforward to define 
similarity measures on two nets that contain the same number of 
units, it is harder to see how this can be done when the basic 
architectures of two nets differ. The second problem Fodor and 
Lepore cite is that even if similarity measures for meanings can be 
successfully crafted, they are inadequate to the task of meeting the 
desiderata which a theory of meaning must satisfy. 

Churchland (1998) shows that the first of these two objections can 
be met. Citing the work of Laakso and Cottrell (2000) he explains 
how similarity measures between activation patterns in nets with 
radically different structures can be defined. Not only that, Laakso 
and Cottrell show that nets of different structures trained on the 
same task develop activation patterns which are strongly similar 
according to the measures they recommend. This offers hope that 
empirically well defined measures of similarity of concepts and 
thoughts across different individuals might be forged. 

On the other hand, the development of a traditional theory of 
meaning based on similarity faces severe obstacles (Fodor and 
Lepore 1999), for such a theory would be required to assign 



19 
 

sentences truth conditions based on an analysis of the meaning of 
their parts, and it is not clear that similarity alone is up to such 
tasks as fixing denotation in the way a standard theory demands. 
However, most connectionists who promote similarity based 
accounts of meaning reject many of the presupposition of standard 
theories. They hope to craft a working alternative which either 
rejects or modifies those presuppositions while still being faithful 
to the data on human linguistic abilities. 

Calvo Garzon (2003) complains that there are reasons to think that 
connectionists must fail. Churchland's response has no answer to 
the collateral information challenge. That problem is that the 
measured similarities between activation patterns for a concept 
(say: grandmother) in two human brains are guaranteed to be very 
low because two people's (collateral) information on their 
grandmothers (name, appearance, age, character) is going to be 
very different. If concepts are defined by everything we know, then 
the measures for activation patterns of our concepts are bound to 
be far apart. This is a truly deep problem in any theory that hopes 
to define meaning by functional relationships between brain 
states. Philosophers of many stripes must struggle with this 
problem. Given the lack of a successfully worked out theory of 
concepts in either traditional or connectionist paradigms, it is only 
fair to leave the question for future research. 

 

9. Connectionism and the Elimination of Folk 

Psychology 
Another important application of connectionist research to 
philosophical debate about the mind concerns the status of folk 
psychology. Folk psychology is the conceptual structure that we 
spontaneously apply to understanding and predicting human 
behavior. For example, knowing that John desires a beer and that 
he believes that there is one in the refrigerator allows us to explain 
why John just went into the kitchen. Such knowledge depends 
crucially on our ability to conceive of others as having desires and 
goals, plans for satisfying them, and beliefs to guide those plans. 
The idea that people have beliefs, plans and desires is a 
commonplace of ordinary life; but does it provide a faithful 
description of what is actually to be found in the brain? 
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Its defenders will argue that folk psychology is too good to be false 
(Fodor 1988, Chapter 1). What more can we ask for the truth of a 
theory than that it provides an indispensable framework for 
successful negotiations with others? On the other hand, 
eliminativists will respond that the useful and widespread use of a 
conceptual scheme does not argue for its truth (Churchland 1989, 
Ch. 1). Ancient astronomers found the notion of celestial spheres 
useful (even essential) to the conduct of their discipline, but now 
we know that there are no celestial spheres. From the 
eliminativists point of view, an allegiance to folk psychology, like 
allegiance to folk (Aristotelian) physics, stands in the way of 
scientific progress. A viable psychology may require as radical a 
revolution in its conceptual foundations as is found in quantum 
mechanics. 

Eliminativists are interested in connectionism because it promises 
to provide a conceptual foundation that might replace folk 

psychology. For example Ramsey et al. (1991) have argued that 
certain feed-forward nets show that simple cognitive tasks can be 
performed without employing features that could correspond to 
beliefs, desires and plans. Presuming that such nets are faithful to 
how the brain works, concepts of folk psychology fare no better 
than do celestial spheres. Whether connectionist models 
undermine folk psychology in this way is still controversial. There 
are two main lines of response to the claim that connectionist 
models support eliminativist conclusions. One objection is that the 

models used by Ramsey et al. are feed forward nets, which are too 
weak to explain some of the most basic features of cognition such 

as short term memory. Ramsey et al. have not shown that beliefs 
and desires must be absent in a class of nets adequate for human 
cognition. A second line of rebuttal challenges the claim that 
features corresponding to beliefs and desires are necessarily 
absent even in the feed forward nets at issue (Von Eckardt 2005). 

The question is complicated further by disagreements about the 
nature of folk psychology. Many philosophers treat the beliefs and 
desires postulated by folk psychology as brain states with symbolic 
contents. For example, the belief that there is a beer in the 
refrigerator is thought to be a brain state that contains symbols 
corresponding to beer and a refrigerator. From this point of view, 
the fate of folk psychology is strongly tied to the symbolic 
processing hypothesis. So if connectionists can establish that 
brain processing is essentially non-symbolic, eliminativist 
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conclusions will follow. On the other hand, some philosophers do 
not think folk psychology is essentially symbolic, and some would 
even challenge the idea that folk psychology is to be treated as a 
theory in the first place. Under this conception, it is much more 
difficult to forge links between results in connectionist research 
and the rejection of folk psychology. 

 

10. Predictive Coding Models of Cognition 
Predictive coding is a well-established information processing tool 
with a wide range of applications. It is useful, for example, in 
compressing the size of data sets. Suppose you wish to transmit a 
picture of a landscape with a blue sky. Since most of the pixels in 
the top half of your image are roughly the same shade, it is very 
inefficient to record the color value (say Red: 46 Green: 78 Blue: 
FF in hexadecimal) over and over again for each pixel in the top 
half of the image. Since the value of one pixel strongly predicts the 
value of its neighbor, the efficient thing to do is record at each pixel 
location, the difference between the predicted value (an average of 
its neighbors) and the actual value for that pixel. (In the case of 
representing an even shaded sky, we would only need to record the 
blue value once, followed by lots of zeros.) This way, major coding 
resources are only needed to keep track of points in the image 
(such as edges) where there are large changes, that is points of 
“surprise” or “unexpected” variation. 

It is well known that early visual processing in the brain involves 
taking differences between nearby values, (for example, to identify 
visual boundaries). It is only natural then to explore how the brain 
might take advantage of predictive coding in perception, inference, 
or even action. (See (Clark, 2013) for an excellent summary and 
entry point to the literature.) There is wide variety in the models 
presented in the predictive coding paradigm, and they tend to be 
specified at a higher level of generality than are connectionist 
models so far discussed. Assume we have a neural net with input, 
hidden and output levels that has been trained on a task (say face 
recognition) and so presumably has information about faces stored 
in the weights connecting the hidden level nodes. Three features 
would classify this net as a predictive coding (PC) model. First, the 
model will have downward connections from the higher levels that 
are able to predict the next input for that task. (The prediction 
might be a representation of a generic face.) Second, the data sent 
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to the higher levels for a given input is not the value recorded at 
the input nodes, but the difference between the predicted values 
and the values actually present. (So in the example, the data 
provided tracks the differences between the face to be recognized 
and the generic face.) In this way the data being received by the 
net is already preprocessed for coding efficiency. Third, the model 
is trained by adjusting the weights in such a way that the error is 
minimized at the inputs. In other words, the trained net reduces 
as much as possible the “surprise” registered in the difference 
between the raw input and its prediction. In so doing it comes to 
be able to predict the face of the individual to be recognized to 
eliminate the error. Some advocates of predictive coding models 
suggest that this scheme provides a unified account of all cognitive 
phenomena, including perception, reasoning, planning and motor 
control. By minimizing prediction error in interacting with the 
environment, the net is forced to develop the conceptual resources 
to model the causal structure of the external world, and so 
navigate that world more effectively. 

The predictive coding (PC) paradigm has attracted a lot of 
attention. There is ample evidence that PC models capture 
essential details of visual function in the mammalian brain (Rao 
and Ballard, 1999; Huang and Rao, 2011). For example, when 
trained on typical visual input, PC models spontaneously develop 
functional areas for edge, orientation and motion detection known 
to exist in visual cortex. This work also raises the interesting point 
that the visual architecture may develop in response to the 
statistics of the scenes being encountered, so that organisms in 
different environments have visual systems specially tuned to their 
needs. 

It must be admitted that there is still no convincing evidence that 
the essential features of PC models are directly implemented as 
anatomical structures in the brain. Although it is conjectured that 
superficial pyramidal cells may transmit prediction error, and deep 
pyramidal cells predictions, we do not know that that is how they 
actually function. On the other hand, PC models do appear more 
neurally plausible than backpropagation architectures, for there is 
no need for a separate process of training on an externally provided 
set of training samples. Instead, predictions replace the role of the 
training set, so that learning and interacting with the environment 
are two sides of a unified unsupervised process. 
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PC models also show promise for explaining higher-level cognitive 
phenomena. An often-cited example is binocular rivalry. When 
presented with entirely different images in two eyes, humans 
report an oscillation between the two images as each in turn comes 
into “focus”. The PC explanation is that the system succeeds in 
eliminating error by predicting the scene for one eye, but only to 
increase the error for the other eye. So the system is unstable, 
“hunting” from one prediction to the other. Predictive coding also 
has a natural explanation for why we are unaware of our blind 
spot, for the lack of input in that area amounts to a report of no 
error, with the result that one perceives “more of the same”. 

PC accounts of attention have also been championed. For example, 
Hohwy (2012) notes that realistic PC models, which must tolerate 
noisy inputs, need to include parameters that track the desired 
precision to be used in reporting error. So PC models need to make 
predictions of the error precision relevant for a given situation. 
Hohwy explores the idea that mechanisms for optimizing precision 
expectations map onto those that account for attention, and 
argues that attentional phenomena such as change blindness can 
be explained within the PC paradigm. 

Predictive coding has interesting implications for themes in the 
philosophy of cognitive science. By integrating the processes of 
top-down prediction with bottom-up error detection, the PC 
account of perception views it as intrinsically theory-laden. 
Deployment of the conceptual categorization of the world embodied 
in higher levels of the net is essential to the very process of 
gathering data about the world. This underscores, as well, tight 
linkages between belief, imaginative abilities, and perception 
(Grush 2004). The PC paradigm also tends to support situated or 
embodied conceptions of cognition, for it views action as a dynamic 
interaction between the organism’s effects on the environment, its 
predictions concerning those effects (its plans), and its continual 
monitoring of error, which provides feedback to help ensure 
success. 

It is too early to evaluate the importance and scope of PC models 
in accounting for the various aspects of cognition. Providing a 
unified theory of brain function in general is, after all, an 
impossibly high standard. Clark’s target article (2013) provides a 
useful forum for airing complaints against PC models and some 
possible responses. One objection that is often heard is that an 
organism with a PC brain can be expected to curl up in a dark 
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room and die, for this is the best way to minimize error at its 
sensory inputs. However, that view may take too narrow a view of 
the sophistication of the predictions available to the organism. If it 
is to survive at all, its genetic endowment coupled with what it can 
learn along the way may very well endow it with the expectation 
that it go out and seek needed resources in the environment. 
Minimizing error for that prediction of its behavior will get it out of 
the dark room. However, it remains to be seen whether a theory of 
biological urges is usefully recast in PC terminology in this way, or 
whether PC theory is better characterized as only part of the 
explanation. Another complaint is that the top-down influence on 
our perception coupled with the constraint that the brain receives 
error signals rather than raw data would impose an unrealistic 
divide between a represented world of fantasy and the world as it 
really is. It is hard to evaluate whether that qualifies as a serious 
objection. Were PC models actually to provide an account of our 
phenomenological experience, and characterize the relations 
between that experience and what we count as real, then skeptical 
conclusions to be drawn would count as features of the view rather 
than objections to it. A number of responders to Clark’s target 
article also worry that PC-models count as overly general. In trying 
to explain everything they explain nothing. Without sufficient 
constraints on the architecture, it is too easy to pretend to explain 
cognitive phenomena by merely redescribing them in a story 
written in the vocabulary of prediction, comparison, error 
minimization, and optimized precison. The real proof of the 
pudding will come with the development of more complex and 
detailed computer models in the PC framework that are biologically 
plausible, and able to demonstrate the defining features of 
cognition. 
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